Using Imaging Flow Cytometry to Quantify and Optimize Giant Vesicle Production by Water-in-oil Emulsion Transfer Methods

小泡 乳状液 超声 表征(材料科学) 化学 化学工程 纳米技术 色谱法 材料科学 有机化学 生物化学 工程类
作者
Yuka Matsushita‐Ishiodori,Martin M. Hanczyc,Anna Wang,Jack W. Szostak,Tetsuya Yomo
出处
期刊:Langmuir [American Chemical Society]
卷期号:35 (6): 2375-2382 被引量:27
标识
DOI:10.1021/acs.langmuir.8b03635
摘要

Many biologists, biochemists, and biophysicists study giant vesicles, which have a diameter of >1 μm, owing to their ease of characterization using standard optical methods. More recently, there has been interest in using giant vesicles as model systems for living cells and for the construction of artificial cells. In fact, there have been a number of reports about functionalizing giant vesicles using membrane-bound pore proteins and encapsulating biochemical reactions. Among the various methods for preparing giant vesicles, the water-in-oil emulsion transfer method is particularly well established. However, the giant vesicles prepared by this method have complex and heterogeneous properties, such as particle size and membrane structure. Here, we demonstrate the characterization of giant vesicles by imaging flow cytometry to provide quantitative and qualitative information about the vesicle products prepared by the water-in-oil emulsion transfer method. Through image-based analyses, several kinds of protocol byproducts, such as oil droplets and vesicles encapsulating no target molecules, were identified and successfully quantified. Further, the optimal agitation conditions for the water-in-oil emulsion transfer method were found from detailed analysis of imaging flow cytometry data. Our results indicate that a sonication-based water-in-oil emulsion transfer method exhibited a higher efficiency in producing giant vesicles, about 10 times or higher than that of vortex and rumble strip-based methods. It is anticipated that these approaches will be useful for fine-tuning giant vesicle production and subsequent applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Anthonywll发布了新的文献求助10
3秒前
3秒前
Xx发布了新的文献求助10
3秒前
coolkid应助快乐的冰淇淋采纳,获得20
4秒前
情怀应助光亮向露采纳,获得10
5秒前
星辰大海应助feeuoo采纳,获得10
5秒前
5秒前
bbihk完成签到,获得积分10
5秒前
6秒前
熙熙攘攘完成签到,获得积分10
7秒前
kxm发布了新的文献求助10
8秒前
企鹅完成签到,获得积分10
10秒前
干雅柏完成签到,获得积分10
11秒前
有福的诸葛钢铁完成签到,获得积分10
13秒前
芒琪发布了新的文献求助10
13秒前
干雅柏发布了新的文献求助10
13秒前
14秒前
Akim应助喜悦采纳,获得10
16秒前
无声瀑布完成签到,获得积分10
16秒前
feeuoo发布了新的文献求助10
21秒前
FashionBoy应助怎么会这样呢采纳,获得10
21秒前
喜悦完成签到,获得积分10
22秒前
六六完成签到,获得积分10
24秒前
希望天下0贩的0应助kxm采纳,获得10
26秒前
淡定水杯完成签到,获得积分10
28秒前
认真科研完成签到,获得积分20
28秒前
梦白鸽完成签到,获得积分10
28秒前
28秒前
elle完成签到 ,获得积分10
29秒前
轻松的冥王星完成签到,获得积分10
30秒前
32秒前
32秒前
33秒前
李健的小迷弟应助feeuoo采纳,获得10
34秒前
jingsihan完成签到,获得积分10
34秒前
呼呼发布了新的文献求助20
34秒前
块块完成签到,获得积分10
34秒前
夕诙应助hhxx采纳,获得30
35秒前
脆脆完成签到,获得积分10
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841977
求助须知:如何正确求助?哪些是违规求助? 3383977
关于积分的说明 10532118
捐赠科研通 3104189
什么是DOI,文献DOI怎么找? 1709550
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878