材料科学
微尺度化学
表面粗糙度
表面光洁度
马氏体
复合材料
铁氧体(磁铁)
冶金
微观结构
数学
数学教育
作者
Sebastian Münstermann,Peerapon Wechsuwanmanee,Wenqi Liu,Junhe Lian
出处
期刊:IOP conference series
[IOP Publishing]
日期:2018-09-21
卷期号:418: 012038-012038
被引量:6
标识
DOI:10.1088/1757-899x/418/1/012038
摘要
In dualphase steels damage initiation can be triggered by interface debonding between ferrite and ferrite or ferrite and martensite, by martensite breaking, or by strain localization in the ferritic matrix. The roughness of sheet materials strongly influences the damage initiation and accumulation of dualphase steel, because roughness provokes local strain concentrations which accelerate the evolution of ductile damage. The presented study quantifies the effect of surface roughness on strain localization and ductile damage evolution in a numerical simulation framework established on different scales. On the macro-scale, an uncoupled phenomenological ductile damage mechanics model is applied to ductile material failure. On the microscale, sub-models are investigated that contain information on surface roughness profiles. Two different conditions are investigated: i.) samples that have been only grinded, ii.) samples that have been grinded and polished. In both cases, the surface roughness is characterized by white light confocal microscopy, and the raw data of these experimental measurements are used as input data for a numerical algorithm that reproduces surfaces with the same statistical roughness profiles. The numerical studies reveal the pronounced influence of surface roughness on material resistance against ductile failure.
科研通智能强力驱动
Strongly Powered by AbleSci AI