Cooperative Bilayer of Lattice-Disordered Nanoparticles as Room-Temperature Sinterable Nanoarchitecture for Device Integrations

材料科学 双层 纳米颗粒 纳米材料 纳米技术 二极管 光电子学 遗传学 生物
作者
Bin Feng,Daozhi Shen,Wengan Wang,Zhongyang Deng,Luchan Lin,Hui Ren,Aiping Wu,Guisheng Zou,Lei Liu,Y. Zhou
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (18): 16972-16980 被引量:33
标识
DOI:10.1021/acsami.9b00307
摘要

Decreasing the interconnecting temperature is essential for 3D and heterogeneous device integrations, which play indispensable roles in the coming era of "more than Moore". Although nanomaterials exhibit a decreased onset temperature for interconnecting, such an effect is always deeply impaired because of organic additives in practical integrations. Meanwhile, current organic-free integration strategies suffer from roughness and contaminants at the bonding interface. Herein, a novel bilayer nanoarchitecture simultaneously overcomes the drawbacks of organics and is highly tolerant to interfacial morphology, which exhibits universal applicability for device-level integrations at even room temperature, with the overall performance outperforming most counterparts reported. This nanoarchitecture features a loose nanoparticle layer with unprecedented deformability for interfacial gap-filling, and a compact one providing firm bonding with the component surface. The two distinct nanoparticle layers cooperatively enhance the interconnecting performance by 73–357%. Apart from the absence of organics, the internal abundant lattice disorders profoundly accelerate the interconnecting process, which is supported by experiments and molecular dynamics simulation. This nanoarchitecture is successfully demonstrated in diversified applications including paper-based light-emitting diodes, Cu–Cu micro-bonding, and SiC power modules. The strategy proposed here can open a new paradigm for device integrations and provide a fresh understanding on interconnecting mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhouYW应助hzauhzau采纳,获得10
2秒前
3秒前
Lvbc发布了新的文献求助10
6秒前
聂青枫完成签到,获得积分10
6秒前
茶色小鸡完成签到,获得积分10
7秒前
李霞客完成签到,获得积分10
7秒前
02完成签到,获得积分10
8秒前
wcuzhl完成签到,获得积分10
9秒前
快乐风松发布了新的文献求助100
11秒前
hhh完成签到,获得积分10
11秒前
大个应助AHR采纳,获得10
12秒前
天天快乐应助AHR采纳,获得10
12秒前
天天快乐应助AHR采纳,获得10
12秒前
CipherSage应助AHR采纳,获得10
12秒前
12秒前
谢花花完成签到 ,获得积分10
12秒前
yuliyixue发布了新的文献求助80
12秒前
星辰大海应助庄严采纳,获得10
12秒前
冯婷完成签到 ,获得积分10
14秒前
Scheduling完成签到 ,获得积分10
14秒前
Clover完成签到 ,获得积分10
14秒前
麻瓜禁止使用魔法完成签到,获得积分10
15秒前
多余完成签到,获得积分10
15秒前
Ferien发布了新的文献求助10
16秒前
guijunmola完成签到 ,获得积分10
16秒前
小马奔奔完成签到 ,获得积分10
17秒前
积极废物完成签到 ,获得积分10
17秒前
scn发布了新的文献求助10
18秒前
祖逸凡完成签到,获得积分10
19秒前
xiaolongbao315完成签到,获得积分10
20秒前
知性的水杯完成签到 ,获得积分10
20秒前
pear完成签到,获得积分10
21秒前
菜头完成签到,获得积分10
21秒前
Tree完成签到 ,获得积分10
21秒前
SYLH应助Zhao采纳,获得30
22秒前
万能图书馆应助AHR采纳,获得10
22秒前
希望天下0贩的0应助AHR采纳,获得10
22秒前
英姑应助AHR采纳,获得10
22秒前
Owen应助AHR采纳,获得10
22秒前
研友_VZG7GZ应助AHR采纳,获得10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792652
求助须知:如何正确求助?哪些是违规求助? 3336874
关于积分的说明 10282421
捐赠科研通 3053766
什么是DOI,文献DOI怎么找? 1675684
邀请新用户注册赠送积分活动 803701
科研通“疑难数据库(出版商)”最低求助积分说明 761510