Multimodel Fusion Based Sequential Optimization

克里金 计算机科学 采样(信号处理) 蒙特卡罗方法 样品(材料) 数学优化 机器学习 数学 计算机视觉 色谱法 统计 滤波器(信号处理) 化学
作者
Shishi Chen,Zhen Ming Jiang,Shuxing Yang,Wei Chen
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:55 (1): 241-254 被引量:38
标识
DOI:10.2514/1.j054729
摘要

Simulation models with different levels of fidelity have been widely used in engineering design. Even though the nonhierarchical multimodel fusion approach has been developed for integrating data from multiple competing low-fidelity models and a high-fidelity model, how to allocate samples from multifidelity models for the purpose of design optimization still remains challenging. In this work, a new multimodel fusion-based sequential optimization approach is proposed to address the issues of 1) where in the design space to allocate more samples, and 2) which model to evaluate at the chosen infilling sample sites. First, an objective-oriented sampling criterion that balances global exploration and local exploitation is employed to identify the infilling sample location to address the first question. To address the second question, an improved preposterior analysis is developed to determine which simulation model to evaluate, considering both predictive accuracy and computational cost. The improved preposterior analysis not only eliminates the time-consuming Monte Carlo loop in the conventional method but also adopts an analytical model updating formula to further improve the efficiency. To demonstrate the merits of the current proposed multimodel fusion-based sequential optimization approach, two numerical examples and a vehicle engine piston design example are tested. It is shown that the proposed multimodel fusion-based sequential optimization approach is capable of allocating samples from multifidelity models to sequentially update the predictive model for optimization at less computational cost compared to the conventional kriging-based sequential optimization approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
汉堡包应助yuan采纳,获得10
1秒前
妮儿发布了新的文献求助10
1秒前
1秒前
habalo发布了新的文献求助10
2秒前
科研通AI6应助星夜采纳,获得30
2秒前
毛儿豆儿完成签到,获得积分10
3秒前
Doss7170完成签到,获得积分10
3秒前
慕青应助木兮采纳,获得10
3秒前
cm357558984发布了新的文献求助10
4秒前
meng发布了新的文献求助10
4秒前
aeolianbells完成签到 ,获得积分10
5秒前
调皮曼冬完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
黄垚发布了新的文献求助10
6秒前
7秒前
7秒前
lian完成签到,获得积分10
7秒前
风中忆枫完成签到,获得积分10
7秒前
无花果应助bhkwxdxy采纳,获得10
7秒前
7秒前
7秒前
7秒前
9秒前
Akim应助shen采纳,获得10
9秒前
小果子完成签到,获得积分0
9秒前
10秒前
我服有点黑应助迪迪迪采纳,获得10
10秒前
10秒前
renshiwufei完成签到,获得积分10
11秒前
11秒前
Hello应助含糊的笑卉采纳,获得10
12秒前
叉兔发布了新的文献求助10
12秒前
李雪松发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321342
求助须知:如何正确求助?哪些是违规求助? 4463125
关于积分的说明 13888898
捐赠科研通 4354271
什么是DOI,文献DOI怎么找? 2391659
邀请新用户注册赠送积分活动 1385225
关于科研通互助平台的介绍 1354994