Systematic Comparison of the EF-1 Alpha Short (EFS) and Viral Promoters for Gene Modification of Human Primary Cells for Clinical Applications

Jurkat细胞 转导(生物物理学) 病毒载体 生物 报告基因 分子生物学 转基因 基因 逆转录病毒 发起人 增强子 病毒学 基因表达 遗传增强 病毒 遗传学 T细胞 重组DNA 生物化学 免疫系统
作者
Roy L. Kao,Eric H. Gschweng,Avigael Rebecca Lerman,Sarah Larson,Andy Tu,Tulika Tyagi,Shantha Senadheera,Roger P. Hollis,Satiro De Oliveira
出处
期刊:Blood [American Society of Hematology]
卷期号:124 (21): 3497-3497 被引量:1
标识
DOI:10.1182/blood.v124.21.3497.3497
摘要

Abstract Optimization of transgene expression is paramount for successful gene modification of primary cells for clinical applications, and careful selection of the viral vector construct is a critical part of this process. Viral promoters based on the U3 region of the Moloney murine leukemia virus (such as MNDU3 and MSCV) are currently the most commonly used for gene transfer in human primary cells. These viral promoter-containing vectors, however, can activate nearby genes, potentially causing toxicity and/or neoplastic transformation. EF1alpha (or its short, intron-less form, EFS) is a promoter that has been recently used in many clinical trials. It is a cellular-derived enhancer/promoter with decreased cross-activation of nearby promoters, therefore hypothetically decreasing the risk of genotoxicity. We have produced vector constructs carrying the internal enhancer/promoters MNDU3, MSCV, or EFS driving clinically relevant transgenes for modification of primary human T lymphocytes and hematopoietic stem cells. Lentiviral vectors containing either the MNDU3 or EFS promoters driving the EGFP reporter gene were used to transduce Jurkat cells and primary human T cells. In Jurkat cells, MNDU3-driven vectors provided 2-3 times higher vector copy integrations with a corresponding higher percentage of EGFP expression, across a wide range of multiplicity of infection (MOI). In primary T cells, however, there was no significant increase in vector copy numbers per cell, but a significant increase in transduction efficiency and geometric mean fluorescence intensity of EGFP expression in cells transduced with MNDU3-driven vectors at all MOI studied, even when corrected for vector copy number. Lentiviral vectors containing either a MNDU3 or EFS promoter driving a first-generation anti-CD19 chimeric antigen receptor (CAR) were used to transduce primary human T cells. We found that integrated vector copy numbers per cell were 0.8 with MNDU3 and 0.5 with EFS, and resultant transgene expression in the transduced populations was 45% with MNDU3 and 22% with EFS. Primary human T cells were also transduced with a lentivirus carrying MSCV or EFS driving a codon-optimized MART-1-specific T cell receptor (TCR) and then analyzed by tetramer staining. MSCV promoter-driven vectors resulted in 33.76%, 33.1%, and 29% higher transgene expression at 5 ng, 10 ng, and 25 ng p24 equivalents compared with T cells transduced with vectors driven by the EFS promoter using the same amount of p24. After correction for integrated vector copy numbers, T cells had more than 2-fold increase in transgene expression when using the MSCV promoter. CD34+ hematopoietic stem cells isolated from human cord blood were transduced using the same high-titer MSCV- or EFS-driven MART-1-specific TCR expression vectors; MSCV-driven lentiviral vectors provided an average vector copy number of 0.5 copies per cell compared to 0.7 copies per cell with the similar EFS-containing vectors. These gene-modified cells were then injected into NOD-scid-IL2rγnull mice, with peripheral blood analyzed by flow cytometry after 8 weeks. HuCD45+/huCD3+/huCD4+ and huCD45+/huCD3+/huCD8+cells had mean transgene expression of 18% and 16% in the MSCV group, compared to 0% and 0% in the EFS group. Together, these results demonstrate more efficient transgene expression is conveyed by the virally-derived MSCV and MNDU3 promoters versus the cellular EFS promoter in gene-modified primary human hematopoietic cells. Higher transgene expression relative to integrated vector copies is consistent with higher promoter function, and transgene expression may be significantly decreased when using the EFS promoter in lentiviral vectors for clinical applications. Further studies are needed to carefully evaluate genotoxic effects of the MNDU3 and MSCV promoters in comparison to the EFS promoter for safe and efficient clinical translation. Disclosures Larson: Millenium Pharmaceuticals, Inc.: Speakers Bureau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫好好完成签到,获得积分10
刚刚
1秒前
hhzz完成签到,获得积分10
1秒前
1秒前
xhemers完成签到,获得积分10
1秒前
111发布了新的文献求助10
1秒前
2秒前
爱静静应助怡然的莫茗采纳,获得10
3秒前
4秒前
科研通AI5应助清秀的以云采纳,获得30
4秒前
李健的粉丝团团长应助xx采纳,获得10
6秒前
大豪子发布了新的文献求助30
6秒前
李繁蕊发布了新的文献求助10
6秒前
10秒前
10秒前
10秒前
10秒前
橘柚完成签到 ,获得积分10
11秒前
zmmmm发布了新的文献求助10
11秒前
领导范儿应助温言采纳,获得10
11秒前
思源应助OvO采纳,获得10
13秒前
迷糊发布了新的文献求助30
14秒前
LY发布了新的文献求助10
15秒前
zzz完成签到,获得积分10
15秒前
KimJongUn完成签到,获得积分10
15秒前
17秒前
17秒前
zy完成签到,获得积分10
18秒前
开心果子发布了新的文献求助10
18秒前
云痴子完成签到,获得积分10
19秒前
SciGPT应助粥粥采纳,获得10
19秒前
19秒前
19秒前
20秒前
苏源完成签到,获得积分10
20秒前
wu关闭了wu文献求助
20秒前
20秒前
21秒前
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808