Molecular dynamics study of tensile properties of graphene/GaN heterostructures

石墨烯 材料科学 异质结 微电子 模数 分子动力学 复合材料 氮化镓 纳米技术 图层(电子) 光电子学 计算化学 化学
作者
Dongjing Liu,Jingjie Zhu,Fu Zhou,Guoqi Zhang,Daoguo Yang
出处
期刊:Journal of physics [IOP Publishing]
卷期号:2390 (1): 012033-012033
标识
DOI:10.1088/1742-6596/2390/1/012033
摘要

Abstract Graphene/GaN nanocomposites have been widely used in high-power and high-frequency optoelectronic devices. At present, the thermal transport characteristics of graphene/gallium nitride heterostructures have been investigated by many scholars, but their mechanical properties have not been systematically studied. In this paper, the effects of graphene layer number, temperature and interfacial structure on the mechanical properties of graphene/GaN heterostructures were investigated by molecular dynamics method. The mechanical properties of materials were analyzed by failure stress, failure strain and Young’s modulus. The simulation results show that the heterogeneous structure is very sensitive to temperature. When the temperature is set at 2000K, the Young’s modulus of the heterostructure decreases by 25.11% compared with that at 300K, which indicates that the increase of temperature will reduce the mechanical properties of graphene composites, However, when the number of graphene layers increases, the mechanical properties of the heterostructures also improved. With the number of graphene layers is set from 1 layer to 5 layers, the performance of the heterostructure is improved, and its Young’s modulus increases by 48.46%. In addition, the effect of interface structure on the young’s modulus of the heterostructure structure is not obvious, but it will affect the maximum failure stress and maximum failure strain of the material. The mechanical properties of graphene in cross section contact with gallium atom are better than those of nitrogen atom. It is beneficial to improve the reliability of microelectronic devices to control and design heterogeneous structures based on the research results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跳熊完成签到,获得积分10
1秒前
吟赏烟霞发布了新的文献求助10
1秒前
maizhan发布了新的文献求助10
1秒前
Yong-AI-BUPT发布了新的文献求助10
1秒前
1秒前
帅帅厅发布了新的文献求助30
2秒前
真德丕发布了新的文献求助10
2秒前
没头脑和不高兴完成签到,获得积分10
2秒前
XU应助xiaolin采纳,获得10
2秒前
李健的小迷弟应助禾苗采纳,获得10
3秒前
舟舟发布了新的文献求助10
3秒前
4秒前
lalaland完成签到,获得积分10
5秒前
啊哦完成签到,获得积分10
5秒前
诗瑜完成签到,获得积分10
5秒前
spw完成签到,获得积分10
5秒前
阿涂发布了新的文献求助10
6秒前
万能图书馆应助dt采纳,获得10
6秒前
6秒前
WN完成签到,获得积分10
6秒前
7秒前
汪爷爷完成签到,获得积分10
7秒前
文献求助完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
RO完成签到,获得积分10
8秒前
鱼刺鱼刺卡完成签到,获得积分10
8秒前
自由凌丝完成签到,获得积分10
9秒前
zhong完成签到,获得积分10
9秒前
kyleaa完成签到,获得积分10
9秒前
fulinghua完成签到,获得积分10
9秒前
浮游应助hadron采纳,获得10
9秒前
结实的芷文完成签到,获得积分10
10秒前
聪明伊完成签到,获得积分10
10秒前
YT完成签到,获得积分10
10秒前
Yong-AI-BUPT完成签到,获得积分10
10秒前
欢喜傲易完成签到,获得积分10
10秒前
vadfdfb完成签到,获得积分10
10秒前
敏感笑槐完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080327
求助须知:如何正确求助?哪些是违规求助? 4298282
关于积分的说明 13390804
捐赠科研通 4121842
什么是DOI,文献DOI怎么找? 2257344
邀请新用户注册赠送积分活动 1261652
关于科研通互助平台的介绍 1195768