Self-Supervised Commonsense Knowledge Learning for Document-Level Relation Extraction

关系抽取 常识 关系(数据库) 自然语言处理 计算机科学 人工智能 情报检索 心理学 知识抽取 数据挖掘
作者
Rongzhen Li,Jiang Zhong,Zhongxuan Xue,Qizhu Dai,Xue Li
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4253909
摘要

Compared to sentence-level relation extraction, practical document-level relation extraction (DocRE) is a more challenging task for which multi-entity problems need to be resolved. It aims at extracting relationships between two entities over multiple sentences at once while taking into account significant cross-sentence features. Learning long-distance semantic relation representation across sentences in a document, however, is a widespread and difficult task. To address this problem, this paper proposes a self-supervised commonsense-enhanced DocRE method, called SCDRE, without external knowledge. First, we introduce self-supervised learning to represent commonsense knowledge of each entity in an entity pair based on the commonsense entailed text. Second, we convert the cross-sentence entity pairs into anonymous entity pairs with coreference commonsense replacement. Finally, we perform semantic relation representation learning on the anonymous entity pairs and automatically convert them into target entity pairs. We examined our model on three publicly accessible datasets, DocRED, DialogRE and MPDD, and the results show that it performs significantly better than strong baselines by 2.03% F1, and commonsense knowledge has an important contribution to the DocRE by the ablation experimental analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅的寒梅完成签到,获得积分10
1秒前
1秒前
不想看文献完成签到 ,获得积分10
1秒前
2秒前
李嘉乐发布了新的文献求助10
2秒前
温水完成签到 ,获得积分10
3秒前
科研通AI5应助饿哭了塞采纳,获得10
3秒前
3秒前
3秒前
4秒前
AllWeKnow完成签到,获得积分10
4秒前
霸气的瑛发布了新的文献求助10
5秒前
霜降完成签到,获得积分20
5秒前
斯文败类应助ljs采纳,获得10
5秒前
小白研发布了新的文献求助10
6秒前
6秒前
6秒前
情怀应助泥花采纳,获得10
7秒前
曦之南。发布了新的文献求助10
8秒前
paojiao不辣发布了新的文献求助10
10秒前
2428完成签到,获得积分10
10秒前
长生发布了新的文献求助150
10秒前
11秒前
SN完成签到,获得积分10
11秒前
万能图书馆应助卜念采纳,获得10
11秒前
大模型应助笑点低从蓉采纳,获得10
11秒前
11秒前
chen发布了新的文献求助10
12秒前
科目三应助啦啦啦采纳,获得10
12秒前
皮皮怪发布了新的文献求助10
12秒前
sean完成签到 ,获得积分10
13秒前
科研通AI5应助Nemo采纳,获得10
14秒前
北方的狼完成签到,获得积分10
14秒前
15秒前
15秒前
paojiao不辣完成签到,获得积分10
15秒前
16秒前
ppp完成签到,获得积分10
16秒前
Sumeru发布了新的文献求助10
17秒前
LHW完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805912
求助须知:如何正确求助?哪些是违规求助? 3350817
关于积分的说明 10351267
捐赠科研通 3066685
什么是DOI,文献DOI怎么找? 1684088
邀请新用户注册赠送积分活动 809298
科研通“疑难数据库(出版商)”最低求助积分说明 765432