清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Localization of mixed intracranial hemorrhages by using a ghost convolution-based YOLO network

卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Lakshmi Prasanna Kothala,Prathiba Jonnala,Sitaramanjaneya Reddy Guntur
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104378-104378 被引量:14
标识
DOI:10.1016/j.bspc.2022.104378
摘要

• Mixed ICH is a serious health disease, so an efficient light-weight multi-scale YOLO-GCB architecture is given for the localization of each hemorrhage in the given CT. • A novel mosaic training method is used to boost the performance by creating a greater number of mixed hemorrhage cases than in the original dataset. • Additional developments of ghost convolution and C3 ghost modules improves the speed by reducing the number of computations. • Memory required to deploy the proposed model either in cloud or in embedded devices is less by comparing with the other state-of-the-art existing models by producing similar results with respect to other metrics. • Finally, the mixed hemorrhages problem is eliminated by predicting a bounding box around each hemorrhage along with a class name and confidence score. Intracranial hemorrhage (ICH) is a serious medical condition that must be diagnosed in a stipulated time through computed tomography (CT) imaging modality. However, the neurologist must initially confirm the specific type of hemorrhage to prescribe an effective treatment. Although conventional image processing and convolution-based deep learning models can effectively perform multiclass classification tasks, they fail to classify if a CT input image contains multiple hemorrhages in a single slice and takes a lot of time to make the final predictions. To overcome these two difficulties, we proposed a novel YOLOv5x-GCB model that can be able to detect multiple hemorrhages with limited resources by employing a ghost convolution process. The advantage of ghost convolution is that it produces the same number of feature maps as vanilla convolution while using less expensive linear operations. Another feature of the proposed model is that it uses the mosaic augmentation technique throughout the training to improve the accuracy of mixed hemorrhage detection. A brain hemorrhage extended dataset containing 21,132 slices from 205 positive patients was used in training and validating the proposed model. To test the robustness of the proposed model, we created a separate dataset with the existing segmentation data, which are available in PhysioNet. As a result, the proposed model achieved an overall precision, recall, F1- score, and mean average precision of 92.1%, 88.9%, 90%, and 93.1%, respectively. In addition to these metrics, other parameters were used in evaluating the proposed model and checking its lightweight capability in terms of memory size and computational time. Results showed that our proposed model can be used in real-time clinical diagnosis by using either embedded devices or cloud services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天开心完成签到 ,获得积分10
13秒前
杨天天完成签到 ,获得积分10
26秒前
优雅的帅哥完成签到 ,获得积分10
30秒前
43秒前
ksak607155发布了新的文献求助10
46秒前
Heidi完成签到 ,获得积分10
48秒前
48秒前
ksak607155完成签到,获得积分10
59秒前
午后狂睡完成签到 ,获得积分10
1分钟前
雪流星完成签到 ,获得积分10
1分钟前
畅快谷秋完成签到 ,获得积分10
1分钟前
Sigmaman完成签到 ,获得积分10
1分钟前
iwsaml完成签到,获得积分10
1分钟前
2分钟前
2分钟前
supermaltose发布了新的文献求助10
2分钟前
流星发布了新的文献求助10
2分钟前
斯文麦片完成签到 ,获得积分10
3分钟前
流星完成签到,获得积分10
4分钟前
流星发布了新的文献求助10
4分钟前
所所应助supermaltose采纳,获得10
4分钟前
yi完成签到,获得积分10
5分钟前
斯文的天奇完成签到 ,获得积分10
5分钟前
nav完成签到 ,获得积分10
6分钟前
jkaaa完成签到,获得积分10
6分钟前
xiaolang2004完成签到,获得积分10
6分钟前
hanspro完成签到,获得积分10
7分钟前
hanspro发布了新的文献求助10
7分钟前
李振博完成签到 ,获得积分10
7分钟前
kingcoffee完成签到 ,获得积分10
7分钟前
美好灵寒完成签到 ,获得积分10
9分钟前
binyao2024完成签到,获得积分10
10分钟前
欣欣完成签到 ,获得积分10
10分钟前
尹静涵完成签到 ,获得积分10
10分钟前
宇文非笑完成签到 ,获得积分0
10分钟前
田様应助XX采纳,获得10
11分钟前
naczx完成签到,获得积分0
11分钟前
戚雅柔完成签到 ,获得积分10
12分钟前
muriel完成签到,获得积分10
12分钟前
efren1806完成签到,获得积分10
13分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780853
求助须知:如何正确求助?哪些是违规求助? 3326349
关于积分的说明 10226647
捐赠科研通 3041524
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799068
科研通“疑难数据库(出版商)”最低求助积分说明 758732