PCA-TLNN-based SERS analysis platform for label-free detection and identification of cisplatin-treated gastric cancer

顺铂 主成分分析 癌症 模式识别(心理学) 化学 计算机科学 医学 内科学 人工智能 化疗
作者
Dawei Cao,Hechuan Lin,Ziyang Liu,Jiaji Qiu,Shengjie Ge,Weiwei Hua,Xiaowei Cao,Yayun Qian,Huiying Xu,Xinzhong Zhu
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:375: 132903-132903 被引量:8
标识
DOI:10.1016/j.snb.2022.132903
摘要

Serum analysis is crucial for favourable prognosis of gastric cancer (GC) and for improving patient survival rates. However, it remains a challenge to develop an effective strategy to accurately identify differences in gastric cancer before and after treatment to guide efficacy evaluation. In this study, we combined surface-enhanced Raman scattering (SERS) with principal component analysis (PCA)-two-layer nearest neighbour (TLNN) to propose a promising serum analytical platform for label-free detection of cisplatin-treated GC mice. A microarray chip fabricated from Au nano-hexagon (AuNH) substrates was employed to measure the SERS spectra of the serum of GC mice at different treatment stages, and then a model for recognition of SERS spectra was constructed using a PCA-TLNN algorithm. The results revealed that the microarray chip exhibited superior portability, SERS activity, stability, and uniformity. Through PCA-TLNN, the GC mice at different treatment stages were successfully segregated, and several key spectral features for distinguishing different treatment stages were captured. The established PCA-TLNN model achieved satisfactory results, with an accuracy of over 97.5%, a sensitivity of over 90%, and a specificity of over 96.7%. Label-free serum SERS in combination with multivariate analysis could serve as a potential technique for the clinical diagnosis and staging of treatments. • The novel microarray chip can realize rapid, sensitive, label-free and high-throughput detection of SERS spectra of serum. • PCA-TLNN successfully differentiated the SERS spectra of serum from cisplatin-treated GC mice at different stages. • The most prominent spectral features for distinguishing different treatment stages • were captured in PCs loading plots. • PCA-TLNN was superior to traditional multivariate algorithm in accuracy, sensitivity and specificity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助废物自救采纳,获得10
1秒前
hkh发布了新的文献求助10
3秒前
6秒前
7秒前
CY-a301E完成签到,获得积分10
8秒前
钱多多完成签到,获得积分20
8秒前
长情箴完成签到 ,获得积分10
9秒前
CYY发布了新的文献求助10
11秒前
钱多多发布了新的文献求助10
11秒前
不倦应助karna采纳,获得10
14秒前
乙醇发布了新的文献求助10
14秒前
852应助XLC采纳,获得30
14秒前
从容的丹南完成签到 ,获得积分10
15秒前
19秒前
咎星完成签到,获得积分10
21秒前
LUMO完成签到,获得积分10
22秒前
xutingfeng发布了新的文献求助10
22秒前
XLC完成签到,获得积分10
23秒前
Rr完成签到,获得积分10
27秒前
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
29秒前
上官若男应助念辞采纳,获得10
29秒前
boss完成签到,获得积分10
29秒前
Mtx3098520564完成签到 ,获得积分10
30秒前
lunar完成签到 ,获得积分10
30秒前
33秒前
33秒前
孝艺完成签到 ,获得积分10
34秒前
xutingfeng完成签到,获得积分10
34秒前
35秒前
35秒前
大豆cong发布了新的文献求助10
36秒前
illuminate完成签到 ,获得积分10
36秒前
Emma完成签到 ,获得积分10
37秒前
Sherry发布了新的文献求助10
40秒前
涛涛完成签到,获得积分10
41秒前
漂亮幻莲发布了新的文献求助10
42秒前
hope完成签到,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780355
求助须知:如何正确求助?哪些是违规求助? 3325680
关于积分的说明 10223949
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669024
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648