A digital twin-driven trajectory tracking control method of a lower-limb exoskeleton

控制理论(社会学) 弹道 计算机科学 外骨骼 粒子群优化 跟踪误差 步态 控制器(灌溉) 跟踪(教育) 人工智能 模拟 控制(管理) 算法 生理学 生物 物理 教育学 心理学 农学 天文
作者
Liping Gao,Li-Jie Zhao,Gui-Song Yang,Chao-Jie Ma
出处
期刊:Control Engineering Practice [Elsevier]
卷期号:127: 105271-105271
标识
DOI:10.1016/j.conengprac.2022.105271
摘要

A direct drive motor is the main component for tracking the gait rehabilitation training trajectory of a lower-limb exoskeleton (LLE). Aiming at the movement instability caused by the changes in the moment of inertia and assembly characteristics of the LLE, a trajectory tracking control method based on the digital twin model is proposed in the study. Firstly, the key characteristic parameters of LLE driven by the direct drive motor are extracted to establish a virtual twin model of LLE. Secondly, the digital twin model is driven by the physical-entity state data and the control parameters of the motor servo are optimized through the twin model based on an adaptive feedback control strategy. Finally, in order to improve the real-time feedback accuracy between the twin model and the physical entity, with the depth deterministic policy gradient and particle swarm optimization algorithm (DDPG-PSO), the parameter matching error between the twin model and the physical entity is reduced. In this way, a digital twin-driven compound control algorithm is obtained. In addition, the proposed method was verified through three sets of experiments. In Experiment 1, the virtual joint angle trajectory θ f i c of the twin model was compared with the actual joint angle trajectory θ a c t and the average error was no more than 0.05, indicating that the twin model could accurately restore the motion trajectory of the physical entity. In Experiment 2, by comparing with tracking effects of Model-free adaptive control, the adaptive feedback control of digital twin-driven has better stability, and can effectively resist external interference. In Experiment 3, under the no-load condition, the algorithm converged to the optimal solution after 40 iterations. In addition, dynamic parameter changes could be detected in real time, thus proving the rapid convergence and good performance of the DDPG-PSO algorithm. • Restore the physical entity in virtual space and map its motion state. • Establishes a digital twin model of LLE. • With the twin model, the external disturbance during the movement of the physical entity is estimated. • Proposes an adaptive feedback control strategy driven by digital twins. • Use the DDPG-PSO algorithm to optimize the digital twin model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心青曼发布了新的文献求助20
刚刚
LILI发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
shirley发布了新的文献求助10
2秒前
乐乐应助莫大力采纳,获得20
2秒前
2秒前
彭于晏应助南非的猫采纳,获得10
3秒前
老大完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
alittle发布了新的文献求助10
3秒前
清爽的雨竹完成签到,获得积分10
4秒前
4秒前
11发布了新的文献求助10
4秒前
等待发布了新的文献求助10
4秒前
纪间发布了新的文献求助10
5秒前
6秒前
砂锅粥发布了新的文献求助10
6秒前
yr完成签到,获得积分10
7秒前
辛菜头发布了新的文献求助10
7秒前
鄙视注册完成签到,获得积分0
7秒前
印印印印帅炸天完成签到,获得积分10
7秒前
ccccc完成签到,获得积分10
8秒前
汤汤发布了新的文献求助10
8秒前
Hello应助果子采纳,获得10
8秒前
8秒前
酷波er应助严惜采纳,获得10
8秒前
SeKa发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
小酸奶完成签到,获得积分10
9秒前
curry完成签到,获得积分10
10秒前
香蕉觅云应助发发发采纳,获得10
10秒前
CipherSage应助梦漓采纳,获得10
10秒前
yr发布了新的文献求助10
11秒前
Moi关闭了Moi文献求助
11秒前
柔弱云朵完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433983
求助须知:如何正确求助?哪些是违规求助? 4546344
关于积分的说明 14201919
捐赠科研通 4466282
什么是DOI,文献DOI怎么找? 2447905
邀请新用户注册赠送积分活动 1438954
关于科研通互助平台的介绍 1415876