Novel Radiomics-Clinical Model for the Noninvasive Prediction of New Fractures After Vertebral Augmentation

无线电技术 列线图 磁共振成像 人工智能 线性判别分析 医学 计算机科学 模式识别(心理学) 放射科 肿瘤科
作者
Jin Liu,Jing Tang,Bin Xia,Zuchao Gu,Hongkun Yin,Huiling Zhang,Haosen Yang,Bin Song
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (6): 1092-1100 被引量:11
标识
DOI:10.1016/j.acra.2022.06.022
摘要

To investigate the noninvasive prediction model for new fractures after percutaneous vertebral augmentation (PVA) based on radiomics signature and clinical parameters.Data from patients who were diagnosed with osteoporotic vertebral compression fracture (OVCF) and treated with PVA in our hospital between May 2014 and April 2019 were retrospectively analyzed. Radiomics features were extracted from T1-weighted magnetic resonance imaging (MRI) of the T11-L5 segments taken before PVA. Different radiomics models was developed by using linear discriminant analysis (LDA), multilayer perceptron (MLP), and stochastic gradient descent (SGD) classifiers. A nomogram was constructed by integrating clinical parameters and Radscore that calculated by the best radiomics model. The model performance was quantified in terms of discrimination, calibration and clinical usefulness.Four clinical parameters and 16 selected radiomics features were used for model development. The clinical model showed poor discrimination capability with area under the curves (AUCs) yielding of 0.522 in the training dataset and 0.517 in the validation dataset. The LDA, MLP and SGD classifier-based radiomics model had achieved AUCs of 0.793, 0.810, and 0.797 in the training dataset, and 0.719, 0.704, and 0.725 in the validation dataset, respectively. The nomogram showed the best performance with AUCs achieving 0.810 and 0.754 in the training and validation datasets, respectively. The decision curve analysis demonstrated the net benefit of the nomogram was higher than that of other models.Our findings indicate that combining clinical features with radiomics features from pre-augmentation T1-weighted MRI can be used to develop a nomogram that can predict new fractures in patients after PVA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助科研通管家采纳,获得10
3秒前
shine完成签到,获得积分10
3秒前
所所应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
tyl完成签到 ,获得积分10
6秒前
7秒前
7秒前
NexusExplorer应助小瓶采纳,获得10
8秒前
wzx199711发布了新的文献求助10
11秒前
gaintpeople完成签到,获得积分10
12秒前
汉堡包应助陈小司采纳,获得10
14秒前
15秒前
muyan完成签到,获得积分10
17秒前
华子的五A替身完成签到,获得积分10
17秒前
20秒前
24秒前
slj完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
不想干活应助追寻飞风采纳,获得10
26秒前
26秒前
26秒前
29秒前
小易发布了新的文献求助10
29秒前
NexusExplorer应助gaintpeople采纳,获得10
29秒前
嗯嗯发布了新的文献求助10
30秒前
31秒前
32秒前
不想看文献完成签到,获得积分10
33秒前
狂野若云关注了科研通微信公众号
33秒前
任性傲云发布了新的文献求助10
33秒前
卢权发布了新的文献求助10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4166078
求助须知:如何正确求助?哪些是违规求助? 3701799
关于积分的说明 11686525
捐赠科研通 3390307
什么是DOI,文献DOI怎么找? 1859261
邀请新用户注册赠送积分活动 919627
科研通“疑难数据库(出版商)”最低求助积分说明 832290