无线电技术
列线图
磁共振成像
人工智能
线性判别分析
医学
计算机科学
模式识别(心理学)
放射科
肿瘤科
作者
Jin Liu,Jing Tang,Bin Xia,Zuchao Gu,Hongkun Yin,Huiling Zhang,Haosen Yang,Bin Song
标识
DOI:10.1016/j.acra.2022.06.022
摘要
To investigate the noninvasive prediction model for new fractures after percutaneous vertebral augmentation (PVA) based on radiomics signature and clinical parameters.Data from patients who were diagnosed with osteoporotic vertebral compression fracture (OVCF) and treated with PVA in our hospital between May 2014 and April 2019 were retrospectively analyzed. Radiomics features were extracted from T1-weighted magnetic resonance imaging (MRI) of the T11-L5 segments taken before PVA. Different radiomics models was developed by using linear discriminant analysis (LDA), multilayer perceptron (MLP), and stochastic gradient descent (SGD) classifiers. A nomogram was constructed by integrating clinical parameters and Radscore that calculated by the best radiomics model. The model performance was quantified in terms of discrimination, calibration and clinical usefulness.Four clinical parameters and 16 selected radiomics features were used for model development. The clinical model showed poor discrimination capability with area under the curves (AUCs) yielding of 0.522 in the training dataset and 0.517 in the validation dataset. The LDA, MLP and SGD classifier-based radiomics model had achieved AUCs of 0.793, 0.810, and 0.797 in the training dataset, and 0.719, 0.704, and 0.725 in the validation dataset, respectively. The nomogram showed the best performance with AUCs achieving 0.810 and 0.754 in the training and validation datasets, respectively. The decision curve analysis demonstrated the net benefit of the nomogram was higher than that of other models.Our findings indicate that combining clinical features with radiomics features from pre-augmentation T1-weighted MRI can be used to develop a nomogram that can predict new fractures in patients after PVA.
科研通智能强力驱动
Strongly Powered by AbleSci AI