MLNet: A Multi-Domain Lightweight Network for Multi-Focus Image Fusion

计算机科学 离散余弦变换 光学(聚焦) 人工智能 核(代数) 卷积(计算机科学) 图像融合 领域(数学分析) 特征提取 频域 图像(数学) 模式识别(心理学) 计算机视觉 人工神经网络 数学 组合数学 光学 物理 数学分析
作者
Xixi Nie,Bo Hu,Xinbo Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5565-5579 被引量:10
标识
DOI:10.1109/tmm.2022.3194991
摘要

Existing multi-focus image fusion (MFIF) methods are difficult to achieve satisfactory results in both fusion performance and rate simultaneously. The spatial domain methods are hard to determine the focus/defocus boundary (FDB), and the transform domain methods are likely to damage the content information of the source images. Moreover, the deep learning-based MFIF methods are usually confronted with low rate due to complex models and enormous learnable parameters. To address these issues, we propose a multi-domain lightweight network (MLNet) for MFIF, which can achieve competitive results in both performance and rate. The proposed MLNet mainly includes three modules, namely focus extraction (FE), focus measure (FM) and image fusion (IF). In the interpretable FE module, the image features extracted by discrete cosine transform-based convolution (DCTConv) and local binary pattern-based convolution (LBPConv) are concatenated and fed into the FM module. DCTConv based on transform domain takes DCT coefficients to construct a fixed convolution kernel without parameter learning, which can effectively capture the high/low frequency content of the image. LBPConv based on spatial domain can achieve structure features and gradient information from source images. In the FM module, a 3-layer 1 × 1 convolution with a few learnable parameters is employed to generate the initial decision map, which has the properties of flexible input. The fused image is obtained by the IF module according to the final decision map. In terms of quantitative and qualitative evaluations, extensive experiments validate that the proposed method outperforms existing state-of-the-art methods on three public datasets. In addition, the proposed MLNet contains only 0.01 M parameters, which is 0.2% of the first CNN-based MFIF method [25].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助zxyan采纳,获得10
刚刚
木子完成签到,获得积分10
2秒前
zhou完成签到,获得积分10
3秒前
sdjf发布了新的文献求助10
3秒前
caiweihong完成签到 ,获得积分10
3秒前
科研通AI6应助efls采纳,获得10
4秒前
大龙哥886应助upupup采纳,获得10
4秒前
5秒前
6秒前
7秒前
fairy完成签到,获得积分20
7秒前
8秒前
DYQ完成签到,获得积分10
8秒前
9秒前
欢呼的过客完成签到,获得积分10
9秒前
9秒前
yyx驳回了田様应助
9秒前
loxx发布了新的文献求助10
10秒前
10秒前
缥缈的帅哥应助晚风采纳,获得20
11秒前
wenyaq完成签到,获得积分10
11秒前
rxh完成签到,获得积分20
12秒前
CodeCraft应助清酒采纳,获得10
13秒前
聪慧砖头发布了新的文献求助10
14秒前
14秒前
武武武完成签到,获得积分10
15秒前
15秒前
fairy关注了科研通微信公众号
15秒前
小连发布了新的文献求助10
15秒前
洁净的钢笔完成签到,获得积分10
16秒前
sunflower完成签到,获得积分0
16秒前
自觉远山发布了新的文献求助10
16秒前
sdjf关注了科研通微信公众号
17秒前
rxh发布了新的文献求助30
18秒前
20秒前
勤奋耳机发布了新的文献求助10
21秒前
ddddd发布了新的文献求助10
21秒前
22秒前
科研通AI2S应助无畏山海采纳,获得10
23秒前
24秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382591
求助须知:如何正确求助?哪些是违规求助? 4505701
关于积分的说明 14022478
捐赠科研通 4415103
什么是DOI,文献DOI怎么找? 2425372
邀请新用户注册赠送积分活动 1418138
关于科研通互助平台的介绍 1396207