Extraction of Multiple Electrical Parameters From IP-Affected Transient Electromagnetic Data Based on LSTM-ResNet

激发极化 电阻率和电导率 电场 人工神经网络 计算机科学 反演(地质) 深度学习 残余物 人工智能 地球物理学 材料科学 地质学 算法 电气工程 物理 工程类 古生物学 量子力学 构造盆地
作者
Shun Zhang,Nannan Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14
标识
DOI:10.1109/tgrs.2023.3266258
摘要

The induced polarization (IP) effect due to a polarizable body distorts transient electromagnetic (TEM) data, thereby potentially triggering sign reversal phenomena in the measured response. The measured horizontal electric field associated with a grounded-wire TEM is more strongly affected by IP effects than the measured vertical field, meaning that data inversion is more problematic for its component. The traditional inversion method, which assumes a frequency independent resistivity, is complex to extract the chargeability. Yet, the chargeability provides critical information, so it is important to extract the chargeability in addition to the resistivity from IP-affected TEM data. Thus, we proposed a data-driven method based on deep learning to recover the resistivity and chargeability of IP-affected horizontal electric fields. This method, named LSTM-ResNet, combines long short-term memory (LSTM) and a residual network (ResNet) to estimate subsurface electrical properties. Synthetic tests showed that LSTM-ResNet is computationally efficient and accurate for inversion problems. Based on the inverse results with data added noise, we found that a well-trained neural network was not sensitive to noise. A case study was performed by applying LSTM-ResNet to field data collected by a grounded-wire TEM survey at the Kalatongke copper-nickel ore deposit. LSTM-ResNet recovered the simultaneous resistivity and chargeability distributions of subsurface structures from the IP-affected horizontal electric TEM field. The results show a high-chargeability and low-resistivity layer, which was consistent with the lithologic profiles based on drilling cores, indicating the accuracy and robustness of the proposed framework for multi-parameter inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助就叫柠檬吧采纳,获得10
刚刚
1秒前
3秒前
yqq38完成签到,获得积分10
4秒前
科研通AI2S应助西西采纳,获得10
5秒前
5秒前
学医自救发布了新的文献求助10
6秒前
12秒前
一二发布了新的文献求助10
13秒前
情怀应助小宇子采纳,获得30
14秒前
共享精神应助哇卡卡采纳,获得10
15秒前
万能图书馆应助zxtwins采纳,获得10
16秒前
17秒前
18秒前
烟火岸上完成签到,获得积分10
18秒前
18秒前
19秒前
小怪兽完成签到 ,获得积分10
19秒前
Guochunbao完成签到,获得积分10
20秒前
冯家乐发布了新的文献求助30
21秒前
汉堡包应助yuki采纳,获得10
22秒前
自由山槐完成签到,获得积分10
22秒前
冰魂应助激情的香旋采纳,获得10
23秒前
wanci应助水若冰寒采纳,获得10
24秒前
hys发布了新的文献求助10
24秒前
理想国的过客完成签到,获得积分10
24秒前
24秒前
杨xy完成签到,获得积分10
25秒前
25秒前
打击8完成签到 ,获得积分10
26秒前
愉快彩虹完成签到,获得积分10
26秒前
科研通AI5应助Alger采纳,获得10
27秒前
28秒前
29秒前
安静凡旋发布了新的文献求助10
29秒前
文艺访风完成签到,获得积分10
30秒前
31秒前
33秒前
33秒前
栗子完成签到,获得积分10
33秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462