Sparse Convoluted Rank Regression in High Dimensions

数学 秩(图论) 回归 统计 回归分析 估计员 最小二乘函数近似 应用数学 算法 组合数学
作者
Le Zhou,Boxiang Wang,Hui Zou
标识
DOI:10.1080/01621459.2023.2202433
摘要

Wang et al. studied the high-dimensional sparse penalized rank regression and established its nice theoretical properties. Compared with the least squares, rank regression can have a substantial gain in estimation efficiency while maintaining a minimal relative efficiency of 86.4%. However, the computation of penalized rank regression can be very challenging for high-dimensional data, due to the highly nonsmooth rank regression loss. In this work we view the rank regression loss as a nonsmooth empirical counterpart of a population level quantity, and a smooth empirical counterpart is derived by substituting a kernel density estimator for the true distribution in the expectation calculation. This view leads to the convoluted rank regression loss and consequently the sparse penalized convoluted rank regression (CRR) for high-dimensional data. We prove some interesting asymptotic properties of CRR. Under the same key assumptions for sparse rank regression, we establish the rate of convergence of the l1-penalized CRR for a tuning free penalization parameter and prove the strong oracle property of the folded concave penalized CRR. We further propose a high-dimensional Bayesian information criterion for selecting the penalization parameter in folded concave penalized CRR and prove its selection consistency. We derive an efficient algorithm for solving sparse convoluted rank regression that scales well with high dimensions. Numerical examples demonstrate the promising performance of the sparse convoluted rank regression over the sparse rank regression. Our theoretical and numerical results suggest that sparse convoluted rank regression enjoys the best of both sparse least squares regression and sparse rank regression. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
MM发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
4秒前
Lucia发布了新的文献求助10
4秒前
A神发布了新的文献求助10
5秒前
changyouhuang发布了新的文献求助10
5秒前
酷酷钢笔发布了新的文献求助20
5秒前
优雅含灵发布了新的文献求助20
5秒前
蒋宏宇关注了科研通微信公众号
6秒前
gzy完成签到,获得积分10
6秒前
cchx发布了新的文献求助10
7秒前
华仔应助义气凝阳采纳,获得10
8秒前
8秒前
打打应助轻舟采纳,获得10
9秒前
读者发布了新的文献求助10
9秒前
10秒前
10秒前
帅男发布了新的文献求助10
11秒前
12秒前
12秒前
浮游应助王赟晖采纳,获得10
14秒前
Lucia完成签到,获得积分10
15秒前
15秒前
李大帅发布了新的文献求助10
15秒前
15秒前
16秒前
河狸完成签到 ,获得积分10
16秒前
Lucas应助九玖酒采纳,获得10
16秒前
xiaoluo发布了新的文献求助10
17秒前
ange发布了新的文献求助10
17秒前
18秒前
18秒前
锦文发布了新的文献求助10
18秒前
小杭76应助spring2025采纳,获得10
18秒前
我是老大应助spring2025采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263795
求助须知:如何正确求助?哪些是违规求助? 4424197
关于积分的说明 13772509
捐赠科研通 4299277
什么是DOI,文献DOI怎么找? 2358996
邀请新用户注册赠送积分活动 1355293
关于科研通互助平台的介绍 1316528