Quantitative and Morphology-Based Deep Convolutional Neural Network Approaches for Osteosarcoma Survival Prediction in the Neoadjuvant and Metastatic Setting.

骨肉瘤 坏死 医学 队列 卷积神经网络 肿瘤科 比例危险模型 新辅助治疗 内科学 病理 人工智能 癌症 计算机科学 乳腺癌
作者
Nicolas Coudray,Michael Occidental,José G. Mantilla,Adalberto Claudio Quiros,Ke Yuan,Ján Balko,Aristotelis Tsirigos,George Jour
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
标识
DOI:10.1158/1078-0432.ccr-24-2599
摘要

Abstract Purpose: Necrosis quantification in the neoadjuvant setting using pathology slide review is the most important validated prognostic marker in conventional osteosarcoma. Herein, we explored three deep learning strategies on histology samples to predict outcome for OSA in the neoadjuvant setting. Experimental Design: Our study relies on a training cohort from New York University (New York, NY) and an external cohort from Charles university (Prague, Czechia). We trained and validated the performance of a supervised approach that integrates neural network predictions of necrosis/tumor content, and compared predicted overall survival (OS) using Kaplan-Meier curves. Furthermore, we explored morphology-based supervised and self-supervised approaches to determine whether intrinsic histomorphological features could serve as a potential marker for OS in the setting of neoadjuvant. Results: Excellent correlation between the trained network and the pathologists was obtained for the quantification of necrosis content (R2=0.899, r=0.949, p < 0.0001). OS prediction cutoffs were consistent between pathologists and the neural network (22% and 30% of necrosis, respectively). Morphology-based supervised approach predicted OS with p-value=0.0028, HR=2.43 [1.10-5.38]. The self-supervised approach corroborated the findings with clusters enriched in necrosis, fibroblastic stroma, and osteoblastic morphology associating with better OS (lg2HR; -2.366; -1.164; -1.175; 95% CI=[-2.996; -0.514]). Viable/partially viable tumor and fat necrosis were associated with worse OS (lg2HR;1.287;0.822;0.828; 95% CI=[0.38-1.974]). Conclusions: Neural networks can be used to automatically estimate the necrosis to tumor ratio, a quantitative metric predictive of survival. Furthermore, we identified alternate histomorphological biomarkers specific to the necrotic and tumor regions themselves which can be used as predictors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
himes发布了新的文献求助10
刚刚
账户已注销应助123采纳,获得20
3秒前
华仔应助cili采纳,获得10
7秒前
王聪颖完成签到,获得积分10
7秒前
7秒前
10秒前
东郭凝蝶发布了新的文献求助10
12秒前
乌冬面发布了新的文献求助20
13秒前
cz发布了新的文献求助10
14秒前
Liam发布了新的文献求助10
16秒前
17秒前
cz完成签到,获得积分10
20秒前
shenerqing发布了新的文献求助10
20秒前
cili发布了新的文献求助10
22秒前
22秒前
愉快怀绿完成签到,获得积分10
24秒前
26秒前
旺旺发布了新的文献求助10
27秒前
summy驳回了锅锅应助
29秒前
飞夜完成签到 ,获得积分10
30秒前
SYLH应助MADMAX采纳,获得10
31秒前
xiangdan发布了新的文献求助10
31秒前
充电宝应助辣辣采纳,获得10
32秒前
乌冬面完成签到,获得积分10
32秒前
可爱的函函应助尊敬的惠采纳,获得10
33秒前
33秒前
Hello应助活泼的诗兰采纳,获得10
34秒前
35秒前
hlt完成签到 ,获得积分10
35秒前
36秒前
DDGD完成签到,获得积分10
38秒前
38秒前
bai发布了新的文献求助10
39秒前
李诞发布了新的文献求助10
40秒前
40秒前
41秒前
42秒前
NexusExplorer应助俏皮的听云采纳,获得10
43秒前
43秒前
丘比特应助DDGD采纳,获得10
44秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818655
求助须知:如何正确求助?哪些是违规求助? 3361728
关于积分的说明 10413958
捐赠科研通 3079935
什么是DOI,文献DOI怎么找? 1693704
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248