Vision-guided crack identification and size quantification framework for dam underwater concrete structures

水下 鉴定(生物学) 计算机科学 地质学 结构工程 工程类 植物 生物 海洋学
作者
Yangtao Li,Haitao Zhao,Yang Wei,Tengfei Bao,Tianyu Li,Qiudong Wang,Ning Wang,Mengfan Zhao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217241287906
摘要

Remotely operated vehicles with cameras provide a non-contact inspection solution for dam underwater structural defect detection. However, manual information extraction methods suffer from problems like labor costs and high misjudgment. This study proposes an integrated dam underwater crack identification and size quantification framework using machine vision and deep learning. First, a real-time automatic detection framework for dam underwater cracks is built via You Only Look Once v5 (YOLOv5), and four different backbone detectors are introduced to balance detection accuracy and speed. Then, the Swin-Transformer module is inserted into the YOLOv5 model to enhance its feature extraction capability and small object detection capability. Next, a method for measuring the true size of cracks was constructed based on deep learning and infrared laser rangefinders. In this study, physical model experiments and actual engineering projects are combined to validate the generalization capability of the proposed crack identification and size quantification method. Experimental results show that the Swin-Transformer-based YOLOv5 model effectively balances detection accuracy and speed with a precision of 0.986, a recall of 0.979, a mean average precision of 0.985, and a frame rate of 68 frames per second in detecting underwater crack images with 768 × 576 pixels. In addition, the proposed method can accurately identify and detect cracks in complex underwater scenes, including obstacle interference, tilt shooting angle, uneven illumination, and turbid water scenarios. Moreover, the method proposed in this paper can quantify the overall size and geometric parameters of underwater cracks with relatively small errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
龙眼完成签到,获得积分10
1秒前
柴脱完成签到,获得积分10
3秒前
5秒前
111发布了新的文献求助10
5秒前
半柚发布了新的文献求助10
6秒前
普外科老白完成签到,获得积分10
7秒前
Esfuerzo发布了新的文献求助10
7秒前
888完成签到,获得积分20
8秒前
xiaofeng完成签到,获得积分10
10秒前
Yaon-Xu发布了新的文献求助30
11秒前
冰魂应助Nancy采纳,获得10
11秒前
所所应助清新的音响采纳,获得10
12秒前
12秒前
自由冬亦完成签到,获得积分10
12秒前
情怀应助扶苏小雨采纳,获得10
13秒前
ssssbbbb完成签到,获得积分10
14秒前
Esfuerzo完成签到,获得积分10
14秒前
16秒前
ding应助kyJYbs采纳,获得10
18秒前
xiaofeng发布了新的文献求助10
18秒前
19秒前
科研通AI2S应助Syne_采纳,获得10
22秒前
22秒前
在水一方应助害羞便当采纳,获得10
23秒前
西门子云发布了新的文献求助10
23秒前
24秒前
科目三应助韩hqf采纳,获得10
24秒前
25秒前
26秒前
26秒前
sunshine发布了新的文献求助10
27秒前
炙热觅松完成签到,获得积分10
28秒前
28秒前
29秒前
赘婿应助笑点低的以亦采纳,获得10
29秒前
heheha发布了新的文献求助10
30秒前
展七发布了新的文献求助10
32秒前
33秒前
bkagyin应助nylon采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366