Multiform Genetic Programming Framework for Symbolic Regression Problems

符号回归 遗传程序设计 计算机科学 回归 人工智能 遗传算法 回归分析 理论计算机科学 机器学习 数学 统计
作者
Jinghui Zhong,Junlan Dong,Weili Liu,Liang Feng,Jun Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tevc.2025.3527875
摘要

Genetic programming (GP) is a widely recognized and powerful approach for symbolic regression (SR) problems. However, existing GP methods rely on a single form to solve the problem, which limits their search diversity and increases the likelihood of getting stuck in local optima, especially in complex scenarios. In this paper, we propose a general multiform GP framework to improve the performance of GP on complicated SR problems. As far as we know, this paper is the first attempt to integrate the multiform optimization paradigm with GP to accelerate the search performance. The key idea of the proposed framework is to construct multiple forms to solve the same problem cooperatively at the same time. During the evolution process, knowledge gained from different forms is shared among the solvers to improve the search diversity and efficiency. A knowledge transfer mechanism is specifically designed to facilitate knowledge transfer among GP solvers with different modeling forms. In addition, an adaptive resource control mechanism is designed to reallocate computing resources according to the problem-solving efficiency of different solvers to further improve search efficiency. To demonstrate the effectiveness of the proposed framework, a multiform GEP algorithm (MF-GEP) is designed and tested on 20 problems, including physical datasets, synthetic datasets, and real-world datasets. The experimental results have demonstrated the effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景代丝完成签到,获得积分10
1秒前
1秒前
2秒前
木仓完成签到,获得积分10
4秒前
赘婿应助郝薇薇薇薇儿采纳,获得50
5秒前
5秒前
华哥做人发布了新的文献求助10
5秒前
ln完成签到 ,获得积分10
5秒前
咻咻完成签到,获得积分10
6秒前
6秒前
7秒前
科研狗发布了新的文献求助10
8秒前
紫涵妍妍妈妈完成签到,获得积分10
9秒前
9秒前
fuje发布了新的文献求助30
10秒前
小蛙发布了新的文献求助10
10秒前
诚心文博应助ztl17523采纳,获得50
10秒前
七叶树发布了新的文献求助10
10秒前
重要梦之发布了新的文献求助10
13秒前
14秒前
菜菜发布了新的文献求助10
14秒前
zuhangzhao完成签到,获得积分10
16秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
打卡下班应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
kk99123应助科研通管家采纳,获得10
17秒前
fusion应助科研通管家采纳,获得10
17秒前
17秒前
英姑应助科研通管家采纳,获得10
17秒前
馒头应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
脑洞疼应助假装有昵称采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
十三艘船发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097565
求助须知:如何正确求助?哪些是违规求助? 3635255
关于积分的说明 11522834
捐赠科研通 3345513
什么是DOI,文献DOI怎么找? 1838684
邀请新用户注册赠送积分活动 906224
科研通“疑难数据库(出版商)”最低求助积分说明 823497