ROLO‐SLAM: Rotation‐Optimized LiDAR‐Only SLAM in Uneven Terrain With Ground Vehicle

激光雷达 计算机视觉 计算机科学 人工智能 同时定位和映射 旋转(数学) 地形 方向(向量空间) 遥感 地质学 地理 数学 移动机器人 机器人 地图学 几何学
作者
Yinchuan Wang,Bin Ren,Xiang Zhang,Pengyu Wang,Chaoqun Wang,Rui Song,Yibin Li,Max Q.‐H. Meng
出处
期刊:Journal of Field Robotics [Wiley]
被引量:1
标识
DOI:10.1002/rob.22505
摘要

ABSTRACT LiDAR‐based SLAM is recognized as one effective method to offer localization guidance in rough environments. However, off‐the‐shelf LiDAR‐based SLAM methods suffer from significant pose estimation drifts, particularly components relevant to the vertical direction, when passing to uneven terrains. This deficiency typically leads to a conspicuously distorted global map. In this article, a LiDAR‐based SLAM method is presented to improve the accuracy of pose estimations for ground vehicles in rough terrains, which is termed Rotation‐Optimized LiDAR‐Only (ROLO) SLAM. The method exploits a forward location prediction to coarsely eliminate the location difference of consecutive scans, thereby enabling separate and accurate determination of the location and orientation at the front‐end. Furthermore, we adopt a parallel‐capable spatial voxelization for correspondence‐matching. We develop a spherical alignment‐guided rotation registration within each voxel to estimate the rotation of vehicle. By incorporating geometric alignment, we introduce the motion constraint into the optimization formulation to enhance the rapid and effective estimation of LiDAR's translation. Subsequently, we extract several keyframes to construct the submap and exploit an alignment from the current scan to the submap for precise pose estimation. Meanwhile, a global‐scale factor graph is established to aid in the reduction of cumulative errors. In various scenes, diverse experiments have been conducted to evaluate our method. The results demonstrate that ROLO‐SLAM excels in pose estimation of ground vehicles and outperforms existing state‐of‐the‐art LiDAR SLAM frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
简简发布了新的文献求助10
2秒前
yym完成签到,获得积分10
3秒前
丘比特应助长孙映易采纳,获得10
6秒前
深情安青应助哈喽采纳,获得10
6秒前
CipherSage应助奇奇怪怪采纳,获得10
7秒前
10秒前
dd完成签到 ,获得积分10
11秒前
12秒前
13秒前
Lucas应助倚阁楼灬昊采纳,获得10
14秒前
酷波er应助gtpking采纳,获得10
14秒前
就是笨怎么了完成签到,获得积分10
15秒前
舒适的涑完成签到 ,获得积分10
16秒前
17秒前
17秒前
wanyx发布了新的文献求助10
17秒前
晓晓马儿完成签到,获得积分10
17秒前
xh发布了新的文献求助10
18秒前
18秒前
19秒前
饼子完成签到 ,获得积分10
21秒前
22秒前
22秒前
MM11111发布了新的文献求助10
23秒前
恒牙完成签到 ,获得积分10
24秒前
25秒前
25秒前
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
26秒前
randi应助科研通管家采纳,获得10
26秒前
randi应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
橘又青发布了新的文献求助10
26秒前
26秒前
herococa应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939542
求助须知:如何正确求助?哪些是违规求助? 3485635
关于积分的说明 11033846
捐赠科研通 3215571
什么是DOI,文献DOI怎么找? 1777287
邀请新用户注册赠送积分活动 863420
科研通“疑难数据库(出版商)”最低求助积分说明 798829