Physics-Informed Autoencoder for Prostate Tissue Microstructure Profiling with Hybrid Multidimensional MRI

仿形(计算机编程) 人工智能 前列腺 计算机科学 自编码 微观结构 人工神经网络 物理 医学物理学 核磁共振 放射科 医学 内科学 化学 结晶学 癌症 操作系统
作者
Batuhan Gündoğdu,Aritrick Chatterjee,Milica Medved,Ulaş Bağcı,Gregory S. Karczmar,Aytekin Oto
出处
期刊:Radiology [Radiological Society of North America]
卷期号:7 (2)
标识
DOI:10.1148/ryai.240167
摘要

Purpose To evaluate the performance of Physics-Informed Autoencoder (PIA), a self-supervised deep learning model, in measuring tissue-based biomarkers for prostate cancer (PCa) using hybrid multidimensional MRI. Materials and Methods This retrospective study introduces PIA, an emerging self-supervised deep learning model that integrates a three-compartment diffusion-relaxation model with hybrid multidimensional MRI. PIA was trained to encode the biophysical model into a deep neural network to predict measurements of tissue-specific biomarkers for PCa without extensive training data requirements. Comprehensive in silico and in vivo experiments, using histopathology measurements as the reference standard, were conducted to validate the model's efficacy in comparison to the traditional nonlinear least squares (NLLS) algorithm. PIA's robustness to noise was tested in in silico experiments with varying signal-to-noise ratio (SNR) conditions, and in vivo performance for estimating volume fractions was evaluated in 21 patients (mean age, 60 years ± 6.6 [SD]; all male) with PCa (71 regions of interest). Evaluation metrics included the intraclass correlation coefficient (ICC) and Pearson correlation coefficient. Results PIA predicted the reference standard tissue parameters with high accuracy, outperforming conventional NLLS methods, especially under noisy conditions (rs = 0.80 vs 0.65, P < .001 for epithelium volume at SNR of 20:1). In in vivo validation, PIA's noninvasive volume fraction estimates matched quantitative histology (ICC, 0.94, 0.85, and 0.92 for epithelium, stroma, and lumen compartments, respectively; P < .001 for all). PIA's measurements strongly correlated with PCa aggressiveness (r = 0.75, P < .001). Furthermore, PIA ran 10 000 faster than NLLS (0.18 second vs 40 minutes per image). Conclusion PIA provided accurate prostate tissue biomarker measurements from MRI data with better robustness to noise and computational efficiency compared with the NLLS algorithm. The results demonstrate the potential of PIA as an accurate, noninvasive, and explainable artificial intelligence method for PCa detection. Keywords: Prostate, Stacked Auto-Encoders, Tissue Characterization, MR-Diffusion-weighted Imaging Supplemental material is available for this article. ©RSNA, 2025 See also commentary by Adams and Bressem in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panpan发布了新的文献求助10
1秒前
菜菜Cc发布了新的文献求助10
1秒前
李倇仪完成签到,获得积分10
1秒前
陈辉完成签到,获得积分10
1秒前
2秒前
wangchen发布了新的文献求助10
2秒前
hhj02完成签到,获得积分10
2秒前
飘逸宛丝完成签到,获得积分10
5秒前
w32发布了新的文献求助10
6秒前
moca发布了新的文献求助10
6秒前
10秒前
木子完成签到 ,获得积分10
13秒前
13秒前
小橙子完成签到 ,获得积分10
13秒前
zhangruiii完成签到,获得积分10
15秒前
6633发布了新的文献求助10
15秒前
爆米花应助小白采纳,获得10
16秒前
梦若浮生完成签到 ,获得积分10
16秒前
16秒前
研友_8Y2M0L发布了新的文献求助10
17秒前
panpan完成签到 ,获得积分20
18秒前
moca完成签到,获得积分10
19秒前
Rhythm完成签到 ,获得积分10
20秒前
慕青应助君齐采纳,获得10
20秒前
lvsehx发布了新的文献求助10
21秒前
zho发布了新的文献求助10
25秒前
向言之完成签到,获得积分10
26秒前
27秒前
李健的小迷弟应助6633采纳,获得10
28秒前
满意涵梅完成签到 ,获得积分10
30秒前
会笑的花发布了新的文献求助10
31秒前
呃呃发布了新的文献求助30
31秒前
逆蝶完成签到,获得积分10
31秒前
Orange应助杜11采纳,获得10
31秒前
CodeCraft应助任性的天空采纳,获得10
32秒前
orixero应助qqy采纳,获得10
33秒前
999完成签到,获得积分10
34秒前
36秒前
十一克拉完成签到,获得积分10
36秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751