Mechanical and Electronic Properties of Bulk and Surface Li6PS5Cl Argyrodite: First-Principles Insights on Li-Filament Resistance

材料科学 晶界 蛋白质丝 复合材料 电解质 带隙 化学物理 矿物学 凝聚态物理 微观结构 化学 物理化学 物理 光电子学 电极
作者
Gregory Pustorino,Harsh Jagad,Wei Li,Min Feng,Matteo Poma,Jeonghyun Ko,Priya Johari,Yue Qi
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:37 (1): 313-321 被引量:6
标识
DOI:10.1021/acs.chemmater.4c02577
摘要

Different Li-filament growth patterns have been experimentally observed in numerous solid electrolytes (SEs) with high ionic conductivity such as garnet Li7La3Zr2O12 (LLZO) and argyrodite Li6PS5Cl (LPSC). Herein, we probed the mechanical and electronic properties of LPSC, using density functional theory calculations, and compared with other SEs to determine the relevant descriptors for predicting Li-filament resistance. LPSC has a complicated structure that can incorporate S2–/Cl– inversion and has Li+ distributed among two Wyckoff sites (24g and 48h). A representative bulk structure that incorporates both phenomena was determined via systematic structure sampling. The lowest energy bulk structures had a majority of Li+ in 48h sites after relaxation, agreeing with experimental studies. The Young's modulus and shear modulus of bulk LPSC are low, ∼10–30 GPa, and the fracture energy of cleaving along the (100)-Li2S-deficient surface is also low, 0.20 J/m2, suggesting poor mechanical resistance to filament growth. The crack surfaces and pore surfaces in LPSC have a similar bandgap and excess electron distribution compared to bulk LPSC, suggesting that these internal defects will not trap electrons to reduce Li+ to Li-metal. Thus, LPSC is likely to experience "dry" cracks, with a mechanical crack opening up first, followed by a Li-filament filling the crack. This is opposite to LLZO, which has a high fracture energy and experiences electron localization at internal defects (e.g., crack surfaces, pore surfaces, and grain boundaries). LLZO has been experimentally observed to suffer "wet" cracks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CHEN发布了新的文献求助10
1秒前
无极微光应助蘧蘧采纳,获得20
1秒前
orixero应助静好采纳,获得10
1秒前
FashionBoy应助FeCl采纳,获得10
1秒前
1秒前
LJ关闭了LJ文献求助
2秒前
共享精神应助杜梦婷采纳,获得10
3秒前
科研通AI2S应助rixinsu采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
布丁完成签到 ,获得积分10
3秒前
3秒前
3秒前
榴莲完成签到,获得积分10
4秒前
林克发布了新的文献求助10
4秒前
ailsa完成签到,获得积分10
4秒前
4秒前
烟花应助qq采纳,获得10
4秒前
柚屿发布了新的文献求助10
5秒前
5秒前
5秒前
Wanz0120发布了新的文献求助20
5秒前
6秒前
hanyi完成签到 ,获得积分10
6秒前
飞飞wolf完成签到,获得积分10
6秒前
6秒前
123发布了新的文献求助10
7秒前
思源应助落寞的采文采纳,获得10
7秒前
ailsa发布了新的文献求助10
7秒前
8秒前
9秒前
木木木发布了新的文献求助10
9秒前
凌乱发布了新的文献求助10
9秒前
lxcy0612发布了新的文献求助30
9秒前
QQ发布了新的文献求助10
10秒前
10秒前
脑洞疼应助眯眯眼的士萧采纳,获得10
10秒前
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700932
求助须知:如何正确求助?哪些是违规求助? 5141378
关于积分的说明 15232242
捐赠科研通 4856069
什么是DOI,文献DOI怎么找? 2605609
邀请新用户注册赠送积分活动 1556949
关于科研通互助平台的介绍 1515058