Deep Learning-based Brain Age Prediction Using MRI to Identify Fetuses with Cerebral Ventriculomegaly

心室肥大 胎儿 医学 人工智能 神经科学 心理学 计算机科学 怀孕 生物 遗传学
作者
Hyuk Jin Yun,H.-J. Lee,Sungmin You,Joo Young Lee,Jerjes Aguirre-Chavez,Lana Vasung,Hyun Ju Lee,Tomo Tarui,Henry A. Feldman,P. Ellen Grant,Kiho Im
出处
期刊:Radiology [Radiological Society of North America]
卷期号:7 (2)
标识
DOI:10.1148/ryai.240115
摘要

Fetal ventriculomegaly (VM) and its severity and associated central nervous system (CNS) abnormalities are important indicators of high risk for impaired neurodevelopmental outcomes. Recently, a novel fetal brain age prediction method using a two-dimensional (2D) single-channel convolutional neural network (CNN) with multiplanar MRI sections showed the potential to detect fetuses with VM. This study examines the diagnostic performance of a deep learning-based fetal brain age prediction model to distinguish fetuses with VM (n = 317) from typically developing fetuses (n = 183), the severity of VM, and the presence of associated CNS abnormalities. The predicted age difference (PAD) was measured by subtracting the predicted brain age from the gestational age in fetuses with VM and typical development. PAD and absolute value of PAD (AAD) were compared between VM and typically developing fetuses. In addition, PAD and AAD were compared between subgroups by VM severity and the presence of associated CNS abnormalities in VM. Fetuses with VM showed significantly larger AAD than typically developing fetuses (P < .001), and fetuses with severe VM showed larger AAD than those with moderate VM (P = .004). Fetuses with VM and associated CNS abnormalities had significantly lower PAD than fetuses with isolated VM (P = .005). These findings suggest that fetal brain age prediction using the 2D single-channel CNN method has the clinical ability to assist in identifying not only the enlargement of the ventricles but also the presence of associated CNS abnormalities. Keywords: MR-Fetal (Fetal MRI), Brain/Brain Stem, Fetus, Supervised Learning, Machine Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms Supplemental material is available for this article. ©RSNA, 2025.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助游游游采纳,获得10
刚刚
1秒前
胡茶茶完成签到 ,获得积分10
1秒前
zz完成签到,获得积分10
2秒前
英姑应助sheng采纳,获得10
2秒前
5秒前
YY完成签到,获得积分10
6秒前
wyl完成签到,获得积分10
6秒前
6秒前
bkagyin应助小马的可爱老婆采纳,获得30
8秒前
liran12319完成签到,获得积分10
8秒前
chenqi完成签到,获得积分10
9秒前
娇气的伟宸完成签到,获得积分10
10秒前
俊逸的凝珍完成签到,获得积分10
12秒前
13秒前
18秒前
晓书完成签到 ,获得积分10
19秒前
自然的茉莉完成签到,获得积分10
24秒前
小橘子完成签到,获得积分10
26秒前
一生所爱完成签到,获得积分10
27秒前
bbdx完成签到,获得积分10
29秒前
sheng完成签到,获得积分10
32秒前
景景好完成签到,获得积分10
37秒前
llll完成签到 ,获得积分10
41秒前
左眼天堂完成签到,获得积分10
41秒前
42秒前
Sewerant完成签到 ,获得积分10
42秒前
Nniu发布了新的文献求助10
44秒前
Akim应助GONGLI采纳,获得10
47秒前
49秒前
顾矜应助认真果汁采纳,获得30
50秒前
左孤容完成签到 ,获得积分10
54秒前
mavissss发布了新的文献求助10
55秒前
俊逸柏柳完成签到 ,获得积分10
56秒前
星启完成签到 ,获得积分10
57秒前
852应助淡定可乐采纳,获得10
1分钟前
1分钟前
1分钟前
bc应助杨zhen采纳,获得30
1分钟前
是真灵还是机灵完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783167
求助须知:如何正确求助?哪些是违规求助? 3328504
关于积分的说明 10236746
捐赠科研通 3043596
什么是DOI,文献DOI怎么找? 1670607
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119