A Road Defect Detection Algorithm Incorporating Partially Transformer and Multiple Aggregate Trail Attention Mechanisms.

计算机科学 帕斯卡(单位) 算法 稳健性(进化) 直方图 人工智能 数据挖掘 生物化学 化学 图像(数学) 基因 程序设计语言
作者
Xueqiu Wang,Huanbing Gao,Zemeng Jia,Jiayang Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada1e7
摘要

Abstract Abstract: Road infrastructure, fundamental to daily life, inevitably sustains damage over time. Timely and precise identification and remediation of road defects are critical to prolong the lifespan of roads and ensure driving safety. Given the limitations of the widely-used You Look Only Once (YOLO) algorithm, including its insufficient receptive field and suboptimal detection accuracy, this paper introduces a novel road defect detection method. First, we propose a new attention mechanism, Aggregate Multiple Coordinate Attention (AMCA), that effectively retains and concatenates channel information while preserving localization data, thereby enhancing the focus on intrinsic features. Second, we design a Cross Stage Partial - Partially Transformer Block (CSP_PTB) that combines CNNs and transformers to yield richer and more varied feature representations. Finally, we develop a novel neck structure, the Re-Calibrated Feature Pyramid Network (Re-Calibration FPN), which selectively combines boundary and semantic information for finer object contour delineation and positional recalibration. Experimental results show that the S version of the algorithm in this paper achieves a detection accuracy of 73.2% on the road defect dataset, which is 4.2% higher than the YOLOv8 algorithm. Additionally, with an FPS of 80, it meets the requirements for real-time detection, achieving a good balance between detection speed and detection accuracy. Additionally, it exhibits excellent generalizability and robustness on the UAV Asphalt Pavement Distress and PASCAL VOC 2007 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duo完成签到,获得积分10
刚刚
xiami应助man采纳,获得10
刚刚
dolabmu发布了新的文献求助50
1秒前
深情安青应助王小乐采纳,获得10
1秒前
李健应助会飞的猪采纳,获得10
2秒前
2秒前
桐桐应助ty采纳,获得10
2秒前
一朵梅花完成签到,获得积分10
3秒前
SciGPT应助haning采纳,获得10
3秒前
情怀应助ml采纳,获得10
3秒前
totoro发布了新的文献求助10
4秒前
高兴的灵雁完成签到,获得积分10
6秒前
六七七完成签到 ,获得积分10
7秒前
7秒前
whosyourdaddyva完成签到,获得积分10
8秒前
伴佰应助zhao采纳,获得10
8秒前
8秒前
8秒前
9秒前
wxz完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
欢呼芒果发布了新的文献求助10
13秒前
14秒前
昀颂完成签到 ,获得积分10
15秒前
haning发布了新的文献求助10
15秒前
77发布了新的文献求助10
15秒前
然大宝完成签到,获得积分10
15秒前
667发布了新的文献求助10
16秒前
16秒前
领导范儿应助gww采纳,获得10
16秒前
17秒前
花影完成签到 ,获得积分10
18秒前
18秒前
Akim应助DW采纳,获得10
18秒前
斯文的小旋风应助Eric800824采纳,获得10
18秒前
科研通AI5应助养猪骑士采纳,获得10
18秒前
付强发布了新的文献求助10
20秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794353
求助须知:如何正确求助?哪些是违规求助? 3339251
关于积分的说明 10294815
捐赠科研通 3055831
什么是DOI,文献DOI怎么找? 1676856
邀请新用户注册赠送积分活动 804799
科研通“疑难数据库(出版商)”最低求助积分说明 762149