Simulating the Economic Impact of Rationality through Reinforcement Learning and Agent-Based Modelling

理性 强化学习 计算机科学 钢筋 人工智能 工程类 认识论 哲学 结构工程
作者
Simone Brusatin,Tommaso Padoan,Andrea Coletta,Domenico Delli Gatti,Aldo Glielmo
标识
DOI:10.1145/3677052.3698621
摘要

Agent-based models (ABMs) are simulation models used in economics to overcome some of the limitations of traditional frameworks based on general equilibrium assumptions. However, agents within an ABM follow predetermined 'bounded rational' behavioural rules which can be cumbersome to design and difficult to justify. Here we leverage multi-agent reinforcement learning (RL) to expand the capabilities of ABMs with the introduction of 'fully rational' agents that learn their policy by interacting with the environment and maximising a reward function. Specifically, we propose a 'Rational macro ABM' (R-MABM) framework by extending a paradigmatic macro ABM from the economic literature. We show that gradually substituting ABM firms in the model with RL agents, trained to maximise profits, allows for studying the impact of rationality on the economy. We find that RL agents spontaneously learn three distinct strategies for maximising profits, with the optimal strategy depending on the level of market competition and rationality. We also find that RL agents with independent policies, and without the ability to communicate with each other, spontaneously learn to segregate into different strategic groups, thus increasing market power and overall profits. Finally, we find that a higher number of rational (RL) agents in the economy always improves the macroeconomic environment as measured by total output. Depending on the specific rational policy, this can come at the cost of higher instability. Our R-MABM framework allows for stable multi-agent learning, is available in open source, and represents a principled and robust direction to extend economic simulators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勇猛的西瓜完成签到,获得积分10
4秒前
4秒前
5秒前
汉堡包应助牛洋洋采纳,获得10
6秒前
沉静白云完成签到,获得积分10
6秒前
LeezZZZ发布了新的文献求助10
9秒前
眼睛大的笑阳完成签到,获得积分20
11秒前
香蕉觅云应助LeezZZZ采纳,获得10
20秒前
21秒前
student完成签到 ,获得积分10
23秒前
晓宇发布了新的文献求助10
25秒前
太阳完成签到 ,获得积分10
27秒前
28秒前
球球尧伞耳完成签到,获得积分10
32秒前
Xiang发布了新的文献求助30
33秒前
今后应助俏皮的一一采纳,获得10
35秒前
轻松的书南完成签到 ,获得积分10
38秒前
39秒前
41秒前
Xiang完成签到,获得积分20
42秒前
尘默完成签到,获得积分10
44秒前
QIQI发布了新的文献求助10
44秒前
盐汽水完成签到 ,获得积分10
46秒前
不会科研的混子完成签到 ,获得积分10
46秒前
LeezZZZ发布了新的文献求助10
47秒前
飞兰完成签到,获得积分10
51秒前
猩猩完成签到,获得积分10
51秒前
52秒前
53秒前
54秒前
bkagyin应助LeezZZZ采纳,获得10
54秒前
55秒前
jie发布了新的文献求助10
56秒前
日光下完成签到 ,获得积分10
58秒前
pluto应助xiaowentu采纳,获得10
58秒前
59秒前
Four_twos完成签到,获得积分10
59秒前
tt发布了新的文献求助10
59秒前
牛洋洋发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385