亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning: A Multicentre Study on Predicting Lateral Lymph Node Metastasis in cN0 Papillary Thyroid Carcinoma

列线图 医学 甲状腺癌 随机森林 转移 机器学习 决策树 人工智能 支持向量机 朴素贝叶斯分类器 接收机工作特性 肿瘤科 放射科 计算机科学 内科学 甲状腺 癌症
作者
Jing Zhou,Daxue Li,Jiahui Ren,Chun Huang,Shiying Yang,Chen Mingyao,Zhongxiao Wan,Jinhang He,Yuchen Zhuang,Xue Song,Lin Chun,Xinliang Su
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [Oxford University Press]
被引量:1
标识
DOI:10.1210/clinem/dgaf070
摘要

The necessity of prophylactic lateral neck dissection for cN0 papillary thyroid carcinoma (PTC) remains debated. This study aimed to compare traditional nomograms with machine learning (ML) models for predicting ipsilateral lateral and level II, III, and IV lymph node metastasis (LNM). Data from 1616 PTC patients diagnosed via fine needle aspiration biopsy from Hospital A were split into training and testing sets (7:3). 243 patients from Hospital B served as validation set. Four dependent variables-ipsilateral lateral, level II, III, and IV LNM-were analyzed. Eight ML models (Logistic Regression, Decision Tree, Random Forest-RF, Gradient Boosting, Support Vector Machine, K-Nearest Neighbor, Gaussian Naive Bayes, Neural Networks) were developed and validated using 10-fold cross-validation and grid search hyperparameter tuning. Models were assessed using 11 metrics including accuracy, area under the curve (AUC), specificity, and sensitivity. The best was compared with nomograms using the Probability-based Ranking Model Approach (PMRA). RF outperformed other approaches achieving accuracy, AUC, specificity, and sensitivity of 0.773/0.728, 0.858/0.799, 0.984/0.935, 0.757/0.807 in the testing/validation sets respectively for ipsilateral LLNM. A streamlined model based on the top ten contributing features that includes ipsilateral central lymph node metastasis rate, extrathyroidal extension, and ipsilateral central lymph node metastasis number retained strong performance and clearly surpassed a traditional nomogram approach based on multiple metrics and PMRA analysis. Similar results were obtained for the other dependent variables, with the RF models relying on distinct but overlapping sets of features. Clinical tool implementation is facilitated via a web-based calculator for each of the four dependent variables. ML, especially RF, reliably predicts lateral LNM in cN0 PTC patients, outperforming traditional nomograms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alisha完成签到,获得积分10
12秒前
酷波er应助凉雨渲采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
23秒前
49秒前
49秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
清脆的大开完成签到,获得积分10
2分钟前
2分钟前
凉雨渲发布了新的文献求助10
2分钟前
kuoping完成签到,获得积分0
2分钟前
凉雨渲完成签到,获得积分10
2分钟前
光合作用完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
灯光师应助科研通管家采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
万能图书馆应助Lilial采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
双手外科结完成签到,获得积分10
5分钟前
5分钟前
安静的海发布了新的文献求助10
5分钟前
聂白晴完成签到,获得积分10
5分钟前
安静的海完成签到,获得积分10
6分钟前
灯光师应助科研通管家采纳,获得10
6分钟前
慕青应助王欣采纳,获得10
6分钟前
6分钟前
王欣发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
灯光师应助科研通管家采纳,获得10
8分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
十七发布了新的文献求助10
8分钟前
飞云完成签到 ,获得积分10
9分钟前
bkagyin应助砥砺前行采纳,获得10
9分钟前
量子星尘发布了新的文献求助10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4280207
求助须知:如何正确求助?哪些是违规求助? 3808241
关于积分的说明 11929343
捐赠科研通 3455651
什么是DOI,文献DOI怎么找? 1895144
邀请新用户注册赠送积分活动 944420
科研通“疑难数据库(出版商)”最低求助积分说明 848242