Simulation of Pantana phyllostachysae Chao hazard spread in Moso bamboo (Phyllostachys pubescens) forests based on XGBoost-CA model

竹子 毛竹 林业 环境科学 农林复合经营 遥感 地理 植物 生物
作者
Anqi He,Zhanghua Xu,Hongbin Zhang,Xin Zhou,Guantong Li,Huafeng Zhang,Bin Li,Yifan Li,Xiaoyu Guo,Zenglu Li,Fengying Guan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tgrs.2025.3526186
摘要

Pantana phyllostachysae Chao ( P. phyllostachysae ) is a destructive leaf-eating pest that poses a significant threat to the health of bamboo forests and the bamboo industry. However, the spatial and temporal spread mechanisms of this pest are still unclear. To better understand and predict the spread of this pest, we used Sentinel-2A/B images from the pest detection period of 2018 to 2021, to identify association factors from five dimensions, including forest stand, meteorology, topography, pest sources, and human environment factors. The association factor sets for the spread of P. phyllostachysae were established under both existence and non-existence pest control scenarios. The extreme gradient boosting (XGBoost) model was employed to derive conversion rules for the respective spread models, enabling the determination of suitability probabilities for both healthy and damaged bamboo forests. These probabilities were then utilized in conjunction with cellular automata (CA) to simulate the spread of P. phyllostachysae under two scenarios. The results showed that the OA and Kappa reached more than 85% and 0.7 in both scenarios, respectively. Meanwhile, the division of pest control scenarios and the selection of XGBoost both help to improve the spreading simulation accuracy. Our models effectively coupled the research results of leaf hosts of different damage levels, simulated the spread of P. phyllostachysae , and identified the dynamic mechanisms of the pest's spread. These findings provide decision support for interrupting the spread path of the pest and achieving precise control, thus safeguarding forest ecological security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
迷人若冰发布了新的文献求助10
2秒前
叶落滴滴哒哒完成签到,获得积分20
2秒前
丘比特应助愉快的孤容采纳,获得30
3秒前
勤劳翰完成签到,获得积分10
4秒前
4秒前
叶夜南完成签到 ,获得积分10
4秒前
5秒前
研友_VZG7GZ应助是阿龙呀采纳,获得10
5秒前
高贵从蕾发布了新的文献求助30
7秒前
勤劳翰发布了新的文献求助10
9秒前
11秒前
skw0303发布了新的文献求助10
12秒前
34发布了新的文献求助10
16秒前
江城子发布了新的文献求助30
17秒前
17秒前
RonSmith完成签到,获得积分20
19秒前
19秒前
上官若男应助skw0303采纳,获得10
20秒前
qw1关闭了qw1文献求助
20秒前
隐形曼青应助ping采纳,获得10
20秒前
22秒前
WANG发布了新的文献求助10
22秒前
ding应助狗十七采纳,获得10
23秒前
整齐唯雪发布了新的文献求助150
24秒前
科研大大完成签到,获得积分10
24秒前
欧皇发布了新的文献求助90
24秒前
Agq完成签到,获得积分10
26秒前
27秒前
27秒前
29秒前
烟花应助腼腆的夏旋采纳,获得30
30秒前
科研通AI5应助WANG采纳,获得10
31秒前
胖子发布了新的文献求助10
32秒前
科研通AI5应助A1234567采纳,获得10
32秒前
32秒前
科研通AI5应助RonSmith采纳,获得30
32秒前
合适烤鸡发布了新的文献求助10
33秒前
坚强雪碧完成签到,获得积分10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4153314
求助须知:如何正确求助?哪些是违规求助? 3689304
关于积分的说明 11654593
捐赠科研通 3381740
什么是DOI,文献DOI怎么找? 1855807
邀请新用户注册赠送积分活动 917482
科研通“疑难数据库(出版商)”最低求助积分说明 831032