Simulation of Pantana phyllostachysae Chao hazard spread in Moso bamboo (Phyllostachys pubescens) forests based on XGBoost-CA model

竹子 毛竹 林业 环境科学 农林复合经营 遥感 地理 植物 生物
作者
Anqi He,Zhanghua Xu,Hongbin Zhang,Xin Zhou,Guantong Li,Huafeng Zhang,Bin Li,Yifan Li,Xiaoyu Guo,Zenglu Li,Fengying Guan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tgrs.2025.3526186
摘要

Pantana phyllostachysae Chao ( P. phyllostachysae ) is a destructive leaf-eating pest that poses a significant threat to the health of bamboo forests and the bamboo industry. However, the spatial and temporal spread mechanisms of this pest are still unclear. To better understand and predict the spread of this pest, we used Sentinel-2A/B images from the pest detection period of 2018 to 2021, to identify association factors from five dimensions, including forest stand, meteorology, topography, pest sources, and human environment factors. The association factor sets for the spread of P. phyllostachysae were established under both existence and non-existence pest control scenarios. The extreme gradient boosting (XGBoost) model was employed to derive conversion rules for the respective spread models, enabling the determination of suitability probabilities for both healthy and damaged bamboo forests. These probabilities were then utilized in conjunction with cellular automata (CA) to simulate the spread of P. phyllostachysae under two scenarios. The results showed that the OA and Kappa reached more than 85% and 0.7 in both scenarios, respectively. Meanwhile, the division of pest control scenarios and the selection of XGBoost both help to improve the spreading simulation accuracy. Our models effectively coupled the research results of leaf hosts of different damage levels, simulated the spread of P. phyllostachysae , and identified the dynamic mechanisms of the pest's spread. These findings provide decision support for interrupting the spread path of the pest and achieving precise control, thus safeguarding forest ecological security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Zhusy采纳,获得30
刚刚
白鹭立雪完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
Patrick完成签到,获得积分10
3秒前
华仔应助绿柳刀采纳,获得30
4秒前
5秒前
Landau发布了新的文献求助10
5秒前
7秒前
123发布了新的文献求助10
8秒前
8秒前
科研通AI5应助高兴的向秋采纳,获得10
8秒前
Erin完成签到,获得积分10
9秒前
9秒前
11秒前
汉堡包应助Landau采纳,获得10
11秒前
12秒前
yc发布了新的文献求助10
12秒前
泥花发布了新的文献求助10
13秒前
xiaofei完成签到 ,获得积分20
13秒前
Erhei完成签到,获得积分10
13秒前
Hcw0525发布了新的文献求助30
14秒前
14秒前
15秒前
星辰大海应助学术智子采纳,获得10
17秒前
Zhang发布了新的文献求助10
17秒前
绿柳刀发布了新的文献求助30
18秒前
zilhua发布了新的文献求助10
18秒前
可爱的函函应助wwwwrrrrr采纳,获得10
18秒前
谷粱靖完成签到,获得积分10
19秒前
20秒前
Hcw0525完成签到,获得积分10
21秒前
大梦完成签到,获得积分10
21秒前
23秒前
zilhua完成签到,获得积分10
23秒前
Leon完成签到,获得积分10
24秒前
123完成签到,获得积分10
25秒前
25秒前
科研民工完成签到,获得积分10
26秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799716
求助须知:如何正确求助?哪些是违规求助? 3345044
关于积分的说明 10323077
捐赠科研通 3061547
什么是DOI,文献DOI怎么找? 1680394
邀请新用户注册赠送积分活动 807069
科研通“疑难数据库(出版商)”最低求助积分说明 763462