Multi-objective design of multi-material truss lattices utilizing graph neural networks

桁架 计算机科学 灵活性(工程) 反向 材料设计 理论计算机科学 图形 格子(音乐) 刚度 分布式计算 代表(政治) 结构工程 数学 工程类 万维网 法学 几何学 物理 统计 政治 声学 政治学
作者
Ramón Frey,Michael R. Tucker,Mohamadreza Afrasiabi,Markus� Bambach
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 3187-3187 被引量:1
标识
DOI:10.1038/s41598-025-86812-3
摘要

Abstract The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems. In this work, we propose a novel approach that incorporates material properties as edge features within the graph representation of multi-material truss lattices, utilizing graph neural networks (GNNs) to develop a fast and efficient inverse design framework. We validate this framework by designing lattices with tunable thermal expansion and stiffness properties, showcasing its ability to explore a broad and flexible design space. We showcase the framework’s inverse design capabilities for both single and multi-objective optimization tasks and assess its limitations. Additionally, we demonstrate the superior capacity of GNNs in capturing structure-property relationships for multi-material systems. We anticipate that the continued advancement of GNN-assisted inverse design will play a key role in unlocking the full potential of multi-material truss lattices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁花瓣完成签到,获得积分10
刚刚
现实的一天完成签到,获得积分10
刚刚
八九寺完成签到,获得积分10
1秒前
Brian发布了新的文献求助30
1秒前
蓝天碧水关注了科研通微信公众号
1秒前
saying关注了科研通微信公众号
2秒前
Eric完成签到,获得积分10
2秒前
weijun发布了新的文献求助80
3秒前
vanilla完成签到,获得积分10
4秒前
4秒前
5秒前
王哪跑12完成签到,获得积分10
5秒前
科目三应助DDDD采纳,获得10
6秒前
6秒前
大龙哥886应助周杰伦采纳,获得10
8秒前
852应助mj789采纳,获得10
8秒前
89发布了新的文献求助10
8秒前
SHAO应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得20
10秒前
浮游应助科研通管家采纳,获得10
10秒前
hahehahahei应助科研通管家采纳,获得10
10秒前
Stella应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
SHAO应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
Hilda007应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
洋气天天完成签到,获得积分10
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586546
求助须知:如何正确求助?哪些是违规求助? 4669842
关于积分的说明 14780027
捐赠科研通 4620572
什么是DOI,文献DOI怎么找? 2530961
邀请新用户注册赠送积分活动 1499717
关于科研通互助平台的介绍 1467878