Equivariant Diffusion Model with A5-Group Neurons for Joint Pose Estimation and Shape Reconstruction

等变映射 姿势 人工智能 计算机科学 计算机视觉 接头(建筑物) 群(周期表) 三维姿态估计 模式识别(心理学) 估计 数学 工程类 建筑工程 化学 有机化学 系统工程 纯数学
作者
Boyan Wan,Yifei Shi,Xiaohong Chen,Kai Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-15
标识
DOI:10.1109/tpami.2025.3540593
摘要

Object pose estimation and shape reconstruction are inherently coupled tasks although they have so far been studied separately in most existing approaches. A few recent works addressed the problem of joint pose estimation and shape reconstruction, but they found difficulties in handling partial observations and shape ambiguities. An open challenge in this area is to design a mechanism that has the two tasks benefit each other and boost the performance and robustness of both. In this work, we advocate the use of diffusion models for joint estimation of category-level object poses and reconstruction of object geometry. Diffusion models formulate shape reconstruction as a generation process conditioned on input observations. It has two main advantages. First, the iterative inference of diffusion models provides a mechanism for iterative optimization for both pose estimation and shape reconstruction. Second, diffusion models allow multiple outputs starting from different input noises, which would address the problem of ambiguity caused by partial observations. To achieve this, we propose equivariant diffusion model for joint pose estimation and shape reconstruction. The approach consists of an equivariant feature extractor to aggregate features of the input point cloud and a ShapePose diffusion model to generate object pose and shape simultaneously. To avoid training the model on all possible shape poses in the SO(3) space, we propose to augment the diffusion model with A5-group neurons where the neurons are converted into 5D vectors and can be rotated with the alternating group A5. Based on the A5-group neurons, we implement SO(3)-equivariant 3D point convolution and SO(3)-equivariant concatenation, making the entire network SO(3)-equivariant. Moreover, to select the most plausible combination of pose and shape from the generated ones, we propose a geometry-based measure of plausibility for an estimated pose along with a reconstructed shape. Extensive experiments demonstrate the effectiveness of the proposed method. Specifically, our method achieves the state-of-the-art on two public datasets and a new dataset with stacked objects, in terms of shape reconstruction and pose estimation. In particular, we show the proposed method could provide multiple plausible outputs under partial observations and shape ambiguities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尘染完成签到 ,获得积分10
5秒前
9秒前
wanna完成签到,获得积分10
9秒前
14秒前
海派Hi完成签到 ,获得积分10
15秒前
王南晰完成签到 ,获得积分10
15秒前
qianci2009完成签到,获得积分10
16秒前
受伤问凝完成签到 ,获得积分10
24秒前
26秒前
小孙孙完成签到 ,获得积分10
26秒前
31秒前
34秒前
xxiao完成签到 ,获得积分10
34秒前
tmobiusx完成签到,获得积分10
43秒前
花花完成签到,获得积分10
58秒前
任性翠安完成签到 ,获得积分10
1分钟前
时尚的冰棍儿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Lea完成签到,获得积分10
1分钟前
南风完成签到 ,获得积分10
1分钟前
Lea发布了新的文献求助10
1分钟前
nine2652完成签到 ,获得积分10
1分钟前
ycool完成签到 ,获得积分10
1分钟前
独特的高山完成签到 ,获得积分10
1分钟前
荼白完成签到 ,获得积分10
1分钟前
smz完成签到 ,获得积分10
1分钟前
火星上书琴完成签到 ,获得积分10
1分钟前
轻歌水越完成签到 ,获得积分10
1分钟前
1分钟前
传奇完成签到 ,获得积分10
1分钟前
QQ糖完成签到 ,获得积分10
1分钟前
1分钟前
lilylwy完成签到 ,获得积分0
1分钟前
哈哈我完成签到,获得积分10
1分钟前
依依完成签到,获得积分10
1分钟前
zhuguli完成签到,获得积分10
2分钟前
2分钟前
NexusExplorer应助Zzzzz采纳,获得10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780879
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226694
捐赠科研通 3041539
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758732