材料科学
自旋电子学
之字形的
密度泛函理论
钙钛矿(结构)
对映体药物
凝聚态物理
化学物理
自旋极化
结晶学
纳米技术
化学
铁磁性
计算化学
电子
物理
对映选择合成
量子力学
催化作用
生物化学
数学
几何学
作者
Shuo Sun,Jiawei Jiang,Menghui Jia,Yunfei Tian,Yin Xiao
标识
DOI:10.1002/anie.202423314
摘要
In this study, we developed new chiral hybrid perovskites, (R/S‐MBA)(GA)PbI4, by incorporating achiral guanidinium (GA+) and chiral R/S‐methylbenzylammonium (R/S‐MBA+) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D. This structure is featured by a hydrogen‐bonding‐network‐induced arrangement of zigzag inorganic chains, further forming an organized layered architecture. The structural dimensionality affects both electronic and spin‐related properties. Density functional theory (DFT) calculations reveal Rashba splitting induced by the inversion asymmetry of the crystal structure, while circularly polarized transient absorption spectroscopy confirms spin lifetime on the nanosecond timescale. Magnetic conductive‐probe atomic force microscopy (mCP‐AFM) measurements demonstrate exceptional chiral‐induced spin selectivity (CISS) with maximum spin polarization degrees of (92 ± 1)% and (‐94 ± 2)% for (R‐MBA)(GA)PbI4 and (S‐MBA)(GA)PbI4, respectively. These findings underscore the potential of (R/S‐MBA)(GA)PbI4 as promising candidates for next‐generation spintronic devices, also highlight the critical role of chemical environment in sculpturing the structural dimension and spin‐polarized property of chiral perovskites.
科研通智能强力驱动
Strongly Powered by AbleSci AI