Few-Shot Hyperspectral Image Classification With Self-Supervised Learning

计算机科学 人工智能 判别式 模式识别(心理学) 高光谱成像 特征提取 班级(哲学) 上下文图像分类 计算机视觉 图像(数学)
作者
Zhaokui Li,Hui Guo,Yushi Chen,Cuiwei Liu,Qian Du,Zhuoqun Fang,Yan Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:30
标识
DOI:10.1109/tgrs.2023.3298851
摘要

Recently, few-shot learning (FSL) has been introduced for hyperspectral image (HSI) classification with few labeled samples. However, existing FSL-based HSI classification methods mainly focus on the meta-knowledge transfer between HSIs. Compared with HSIs, natural images have sufficient annotated data. To utilize natural images (base class data) to achieve accurate classification of HSIs (novel class data), we propose a novel few-shot classification framework with SSL (FSCF-SSL) for HSIs in this article. The orientation of objects in natural images is relatively unitary, whereas the objects of image patches for each pixel in HSIs have diverse orientations in the spatial domain. To make better use of base classes, we design an SSL with geometric transformations (SSLGTs), which sets rotation labels as supervision to extract low-level features that can better represent diverse orientations, and then conduct SSLGT and FSL on base classes to learn transferable spatial meta-knowledge. Next, a spectral-spatial feature extraction network is carefully designed to better utilize the spatial and spectral information of HSIs, where the weights of the first seven layers of the spatial part are initialized by the weights of the corresponding layers trained on base classes. Finally, to fully explore the few annotated data from novel classes, we design an SSL with contrastive learning (SSLCL) that can mine the category-invariant features contained in the novel class data itself, and then perform SSLCL and FSL on novel classes to learn more discriminative individual knowledge. Experimental results on four HSI datasets show that FSCF-SSL offers a significant improvement over state-of-the-art methods. The code is available at https://github.com/Li-ZK/FSCF-SSL-2023 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒虫儿坤发布了新的文献求助10
刚刚
卷心菜完成签到 ,获得积分10
1秒前
1秒前
2秒前
赵雪莲完成签到,获得积分10
4秒前
纯真的白猫完成签到,获得积分10
5秒前
5秒前
黄则已发布了新的文献求助10
5秒前
一一一发布了新的文献求助10
5秒前
赘婿应助JH采纳,获得10
6秒前
balabala发布了新的文献求助10
6秒前
无花果应助顺利毕业采纳,获得10
6秒前
Jasper应助喂喂喂采纳,获得10
6秒前
大豪发布了新的文献求助10
6秒前
微光熠完成签到,获得积分10
6秒前
NexusExplorer应助懒虫儿坤采纳,获得10
7秒前
7秒前
pasxc完成签到 ,获得积分10
8秒前
刘龙完成签到 ,获得积分10
8秒前
8秒前
xxfsx应助tianyan采纳,获得30
8秒前
8秒前
Jasper应助mt采纳,获得10
9秒前
喔喔完成签到,获得积分10
9秒前
11秒前
传奇3应助微光熠采纳,获得10
11秒前
求文者完成签到,获得积分10
11秒前
Fuch完成签到 ,获得积分10
11秒前
miao完成签到,获得积分10
11秒前
穆柏杨完成签到,获得积分10
12秒前
William发布了新的文献求助10
12秒前
12秒前
大风发布了新的文献求助10
12秒前
科研通AI2S应助YXH采纳,获得10
14秒前
乐乐应助木木很累采纳,获得10
15秒前
SciGPT应助心尘采纳,获得10
15秒前
mt完成签到,获得积分10
15秒前
narcol发布了新的文献求助30
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537346
求助须知:如何正确求助?哪些是违规求助? 4624899
关于积分的说明 14593747
捐赠科研通 4565427
什么是DOI,文献DOI怎么找? 2502354
邀请新用户注册赠送积分活动 1480976
关于科研通互助平台的介绍 1452191