Pattern Recognition of Distributed Optical Fiber Vibration Sensors Based on Resnet 152

短时傅里叶变换 模式识别(心理学) 卷积神经网络 计算机科学 信号(编程语言) 特征(语言学) 时域 特征提取 分割 假警报 傅里叶变换 计算机视觉 人工智能 数学 数学分析 傅里叶分析 语言学 哲学 程序设计语言
作者
Xibo Jin,Kun Liu,Junfeng Jiang,Tianhua Xu,Zhenyang Ding,Xinxin Hu,Yuelang Huang,Dongqi Zhang,Sichen Li,Kang Xue,Tiegen Liu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (17): 19717-19725 被引量:11
标识
DOI:10.1109/jsen.2023.3295948
摘要

In recent years, traditional perimeter security system is gradually replaced by optical fiber distributed vibration sensing system, as it has superior advantages such as high sensitivity, fast response, and simple structure. However, it is still challenging to accurately realize multievent pattern recognition in practical applications. Accurate pattern recognition can reduce the false alarm rate and significantly increase the stability of the optical fiber system. In this article, we proposed a pattern recognition approach based on short-time Fourier transform (STFT) and Resnet 152-based neural network. First, the vibration signal containing high-frequency information was extracted through a median filter. Second, STFT was used to convert a 1-D time-domain signal to a 2-D time–frequency signal. The feature dimension of optical signals was expanded. Third, the redundant information would be removed by dividing the high-, medium-, and low-energy segments. Finally, the preprocessed optical signals were sent to Resnet 152 convolutional neural network (CNN) model for pattern recognition. To verify the effectiveness of the proposed scheme, field tests with nine sensing events (climbing, crashing, cutting, kicking, knocking hard, knocking lightly, no intrusion, pulling, and waggling) have been experimentally carried out. It is demonstrated that the average recognition accuracy of the nine common sensing events is 96.67%, and the detection time is 0.2391 s. The feasibility of deep CNN in solving pattern recognition has been proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助032524采纳,获得10
1秒前
善学以致用应助坦率灵槐采纳,获得10
1秒前
寒冷黎云发布了新的文献求助10
1秒前
2秒前
2秒前
Hello应助有趣的灵魂采纳,获得10
3秒前
何以载道发布了新的文献求助30
3秒前
个性的无敌完成签到,获得积分10
4秒前
伶俐飞风完成签到,获得积分10
4秒前
5秒前
LL完成签到,获得积分10
6秒前
6秒前
Sean发布了新的文献求助10
6秒前
7秒前
善学以致用应助wonder采纳,获得10
7秒前
7秒前
anny2022完成签到,获得积分10
7秒前
清风发布了新的文献求助10
7秒前
徐zz发布了新的文献求助50
7秒前
115566完成签到 ,获得积分10
8秒前
gu完成签到,获得积分10
8秒前
9秒前
lo完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助150
9秒前
wss完成签到 ,获得积分10
10秒前
尹冰之完成签到,获得积分10
10秒前
10秒前
wen发布了新的文献求助10
10秒前
光亮的思柔完成签到,获得积分10
11秒前
赘婿应助shuofeng采纳,获得10
11秒前
顺心的芷荷完成签到 ,获得积分10
12秒前
12秒前
13秒前
王圈发布了新的文献求助10
13秒前
坎坎坷坷发布了新的文献求助10
17秒前
17秒前
核桃应助懒橘希希采纳,获得30
18秒前
人间风完成签到,获得积分10
19秒前
沉静尔蓝完成签到,获得积分10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132359
求助须知:如何正确求助?哪些是违规求助? 4333801
关于积分的说明 13502280
捐赠科研通 4170858
什么是DOI,文献DOI怎么找? 2286696
邀请新用户注册赠送积分活动 1287582
关于科研通互助平台的介绍 1228505