Multi-Task Learning With Hierarchical Guidance for Locating and Stratifying Submucosal Tumors

计算机科学 推论 模式识别(心理学) 分割 人工智能 特征(语言学) 分层(种子) 机器学习 种子休眠 哲学 语言学 植物 发芽 休眠 生物
作者
Ruifei Zhang,Feng Zhang,Si Qin,Dejun Fan,Chaowei Fang,Jing Ma,Xiang Wan,Guanbin Li,Xutao Lin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4478-4488
标识
DOI:10.1109/jbhi.2023.3291433
摘要

Locating and stratifying the submucosal tumor of the digestive tract from endoscopy ultrasound (EUS) images are of vital significance to the preliminary diagnosis of tumors. However, the above problems are challenging, due to the poor appearance contrast between different layers of the digestive tract wall (DTW) and the narrowness of each layer. Few of existing deep-learning based diagnosis algorithms are devised to tackle this issue. In this article, we build a multi-task framework for simultaneously locating and stratifying the submucosal tumor. And considering the awareness of the DTW is critical to the localization and stratification of the tumor, we integrate the DTW segmentation task into the proposed multi-task framework. Except for sharing a common backbone model, the three tasks are explicitly directed with a hierarchical guidance module, in which the probability map of DTW itself is used to locally enhance the feature representation for tumor localization, and the probability maps of DTW and tumor are jointly employed to locally enhance the feature representation for tumor stratification. Moreover, by means of the dynamic class activation map, probability maps of DTW and tumor are reused to enforce the stratification inference process to pay more attention to DTW and tumor regions, contributing to a reliable and interpretable submucosal tumor stratification model. Additionally, considering the relation with respect to other structures is beneficial for stratifying tumors, we devise a graph reasoning module to replenish non-local relation knowledge for the stratification branch. Experiments on a Stomach-Esophagus and an Intestinal EUS dataset prove that our method achieves very appealing performance on both tumor localization and stratification, significantly outperforming state-of-the-art object detection approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助Senna采纳,获得10
2秒前
FashionBoy应助哈哈哈采纳,获得10
2秒前
2秒前
独特的泥猴桃完成签到,获得积分10
3秒前
ZMmmm发布了新的文献求助10
4秒前
yiyi发布了新的文献求助10
4秒前
贺兰鸵鸟完成签到,获得积分10
4秒前
可爱的函函应助yuanshl1985采纳,获得10
5秒前
6秒前
科研通AI5应助顾志成采纳,获得10
6秒前
番茄是个西红柿完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
aprilvanilla应助susu采纳,获得10
7秒前
行简完成签到,获得积分10
7秒前
小巫发布了新的文献求助10
7秒前
共享精神应助阳子采纳,获得10
7秒前
和谐的曼易完成签到,获得积分10
8秒前
liang发布了新的文献求助10
8秒前
周小鱼发布了新的文献求助10
9秒前
9秒前
江筱完成签到,获得积分10
9秒前
NexusExplorer应助二六采纳,获得10
9秒前
10秒前
充电宝应助司徒代云采纳,获得30
10秒前
提灯发布了新的文献求助10
10秒前
昏睡的蟠桃应助负责的方盒采纳,获得200
10秒前
dennisysz发布了新的文献求助10
11秒前
11秒前
连敏锐发布了新的文献求助10
11秒前
12秒前
12秒前
Aliothae发布了新的文献求助10
14秒前
15秒前
15秒前
重要的秋尽完成签到,获得积分10
15秒前
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793818
求助须知:如何正确求助?哪些是违规求助? 3338647
关于积分的说明 10291005
捐赠科研通 3055082
什么是DOI,文献DOI怎么找? 1676342
邀请新用户注册赠送积分活动 804374
科研通“疑难数据库(出版商)”最低求助积分说明 761853