亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep neural network: As the novel pipelines in multiple preprocessing for Raman spectroscopy

计算机科学 预处理器 人工神经网络 噪音(视频) 人工智能 数据预处理 拉曼光谱 数据处理 信号处理 信号(编程语言) 降噪 小波 模式识别(心理学) 数字信号处理 光学 物理 计算机硬件 图像(数学) 程序设计语言 操作系统
作者
Chi Gao,Peng Zhao,Qi Fan,Haonan Jing,Ruochen Dang,Weifeng Sun,Yutao Feng,Bingliang Hu,Quan Wang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:302: 123086-123086 被引量:13
标识
DOI:10.1016/j.saa.2023.123086
摘要

Raman spectroscopy is a kind of vibrational method that can rapidly and non-invasively gives chemical structural information with the Raman spectrometer. Despite its technical advantages, in practical application scenarios, Raman spectroscopy often suffers from interference, such as noises and baseline drifts, resulting in the inability to acquire high-quality Raman spectroscopy signals, which brings challenges to subsequent spectral analysis. The commonly applied spectral preprocessing methods, such as Savitzky-Golay smooth and wavelet transform, can only perform corresponding single-item processing and require manual intervention to carry out a series of tedious trial parameters. Especially, each scheme can only be used for a specific data set. In recent years, the development of deep neural networks has provided new solutions for intelligent preprocessing of spectral data. In this paper, we first creatively started from the basic mechanism of spectral signal generation and constructed a mathematical model of the Raman spectral signal. By counting the noise parameters of the real system, we generated a simulation dataset close to the output of the real system, which alleviated the dependence on data during deep learning training. Due to the powerful nonlinear fitting ability of the neural network, fully connected network model is constructed to complete the baseline estimation task simply and quickly. Then building the Unet model can effectively achieve spectral denoising, and combining it with baseline estimation can realize intelligent joint processing. Through the simulation dataset experiment, it is proved that compared with the classic method, the method proposed in this paper has obvious advantages, which can effectively improve the signal quality and further ensure the accuracy of the peak intensity. At the same time, when the proposed method is applied to the actual system, it also achieves excellent performance compared with the common method, which indirectly indicates the effectiveness of the Raman signal simulation model. The research presented in this paper offers a variety of efficient pipelines for the intelligent processing of Raman spectroscopy, which can adapt to the requirements of different tasks while providing a new idea for enhancing the quality of Raman spectroscopy signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoqiang完成签到,获得积分10
24秒前
HuY完成签到 ,获得积分10
28秒前
xiaolang2004完成签到,获得积分10
32秒前
50秒前
zsmj23完成签到 ,获得积分0
56秒前
九黎完成签到 ,获得积分10
56秒前
冷傲怜蕾完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
拼搏的不评完成签到,获得积分10
2分钟前
ZW完成签到,获得积分10
3分钟前
Hon完成签到,获得积分10
3分钟前
3分钟前
3分钟前
杪夏二八完成签到 ,获得积分10
3分钟前
大模型应助QQ采纳,获得30
4分钟前
yshj完成签到 ,获得积分10
4分钟前
4分钟前
调皮冷梅完成签到 ,获得积分10
4分钟前
花花521完成签到,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
阔达磬完成签到,获得积分10
6分钟前
酷炫的咖啡豆应助Sandy采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
Billy应助老迟到的沛萍采纳,获得30
7分钟前
7分钟前
酷炫的咖啡豆应助洒脱鲲采纳,获得10
7分钟前
P_Chem完成签到,获得积分10
7分钟前
7分钟前
Akim应助TXZ06采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
大模型应助TXZ06采纳,获得10
7分钟前
minuxSCI完成签到,获得积分10
7分钟前
李爱国应助xakars采纳,获得30
7分钟前
8分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922134
求助须知:如何正确求助?哪些是违规求助? 3466855
关于积分的说明 10945494
捐赠科研通 3195774
什么是DOI,文献DOI怎么找? 1765860
邀请新用户注册赠送积分活动 855784
科研通“疑难数据库(出版商)”最低求助积分说明 795104