已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep neural network: As the novel pipelines in multiple preprocessing for Raman spectroscopy

计算机科学 预处理器 人工神经网络 噪音(视频) 人工智能 数据预处理 拉曼光谱 数据处理 信号处理 信号(编程语言) 降噪 小波 模式识别(心理学) 数字信号处理 光学 操作系统 图像(数学) 物理 程序设计语言 计算机硬件
作者
Chi Gao,Peng Zhao,Qi Fan,Haonan Jing,Ruochen Dang,Weifeng Sun,Yutao Feng,Bingliang Hu,Quan Wang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:302: 123086-123086 被引量:13
标识
DOI:10.1016/j.saa.2023.123086
摘要

Raman spectroscopy is a kind of vibrational method that can rapidly and non-invasively gives chemical structural information with the Raman spectrometer. Despite its technical advantages, in practical application scenarios, Raman spectroscopy often suffers from interference, such as noises and baseline drifts, resulting in the inability to acquire high-quality Raman spectroscopy signals, which brings challenges to subsequent spectral analysis. The commonly applied spectral preprocessing methods, such as Savitzky-Golay smooth and wavelet transform, can only perform corresponding single-item processing and require manual intervention to carry out a series of tedious trial parameters. Especially, each scheme can only be used for a specific data set. In recent years, the development of deep neural networks has provided new solutions for intelligent preprocessing of spectral data. In this paper, we first creatively started from the basic mechanism of spectral signal generation and constructed a mathematical model of the Raman spectral signal. By counting the noise parameters of the real system, we generated a simulation dataset close to the output of the real system, which alleviated the dependence on data during deep learning training. Due to the powerful nonlinear fitting ability of the neural network, fully connected network model is constructed to complete the baseline estimation task simply and quickly. Then building the Unet model can effectively achieve spectral denoising, and combining it with baseline estimation can realize intelligent joint processing. Through the simulation dataset experiment, it is proved that compared with the classic method, the method proposed in this paper has obvious advantages, which can effectively improve the signal quality and further ensure the accuracy of the peak intensity. At the same time, when the proposed method is applied to the actual system, it also achieves excellent performance compared with the common method, which indirectly indicates the effectiveness of the Raman signal simulation model. The research presented in this paper offers a variety of efficient pipelines for the intelligent processing of Raman spectroscopy, which can adapt to the requirements of different tasks while providing a new idea for enhancing the quality of Raman spectroscopy signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
诚心的信封完成签到 ,获得积分10
刚刚
1秒前
香蕉觅云应助SophiaMX采纳,获得10
2秒前
Cheng完成签到 ,获得积分10
3秒前
Bella完成签到 ,获得积分10
4秒前
绝尘发布了新的文献求助10
4秒前
5秒前
领导范儿应助芝麻汤圆采纳,获得10
6秒前
6秒前
可久斯基完成签到 ,获得积分10
8秒前
CipherSage应助一棵好困芽采纳,获得10
9秒前
乳酸菌小面包完成签到,获得积分10
9秒前
出生发布了新的文献求助10
10秒前
橙子味的邱憨憨完成签到 ,获得积分10
11秒前
子夜yyy完成签到,获得积分20
11秒前
大模型应助SophiaMX采纳,获得10
11秒前
11秒前
友好绿柏发布了新的文献求助10
11秒前
欣慰问凝完成签到 ,获得积分10
11秒前
李大刚完成签到 ,获得积分10
14秒前
Herisland完成签到 ,获得积分10
14秒前
柳紊完成签到,获得积分10
15秒前
Carrots发布了新的文献求助10
16秒前
16秒前
友好绿柏完成签到,获得积分10
18秒前
19秒前
Iron_five完成签到 ,获得积分10
22秒前
Willer完成签到,获得积分10
23秒前
出生完成签到,获得积分10
25秒前
童话艺术佳完成签到,获得积分10
26秒前
小欧文完成签到,获得积分10
27秒前
小谢同学完成签到 ,获得积分10
29秒前
不学习的牛蛙完成签到 ,获得积分10
30秒前
搞怪的音响完成签到 ,获得积分10
30秒前
舒适的方盒完成签到 ,获得积分10
35秒前
义气的银耳汤完成签到 ,获得积分10
37秒前
38秒前
cxx完成签到 ,获得积分10
38秒前
勤恳的断秋完成签到 ,获得积分10
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784735
求助须知:如何正确求助?哪些是违规求助? 3329909
关于积分的说明 10243866
捐赠科研通 3045255
什么是DOI,文献DOI怎么找? 1671603
邀请新用户注册赠送积分活动 800486
科研通“疑难数据库(出版商)”最低求助积分说明 759424