Predicting functional dependency using machine learning among a middle-aged and older Chinese population

日常生活活动 队列 依赖关系(UML) 队列研究 人口 老年学 医学 物理疗法 心理学 物理医学与康复 计算机科学 人工智能 环境卫生 内科学
作者
Qi Yu,Zihan Li,Chenyu Yang,Lingzhi Zhang,Muqi Xing,Wenyuan Li
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier BV]
卷期号:115: 105124-105124 被引量:8
标识
DOI:10.1016/j.archger.2023.105124
摘要

To develop prediction models for assessing functional dependency in a middle-aged and older Chinese population. Adults ≥45 years old from the China Health and Retirement Longitudinal Study (CHARLS) and without functional dependency at baseline were included. Functional dependency was defined as needing any help in any basic activities of daily living (ADL) or instrumental activities of daily living (IADL). The outcomes were overall functional dependency, ADL and IADL dependency. Stacked ensemble models were constructed based on five selected machine learning models. Models were trained and tested in the 2011–2015 cohort, and were externally validated in the 2015–2018 cohort. SHapley Additive exPlanations (SHAP) was utilized to quantify the significance of predictors. In the training cohort, a total of 6,297 participants were included at baseline, 1,893 developed functional dependency during the follow-up period. The stacked ensemble model achieved the best performance in terms of discrimination ability for predicting overall functional dependency, ADL and IADL dependency, with AUCs of 0.750, 0.690 and 0.748, respectively; in external validation cohort, the corresponding AUCs were 0.725, 0.719 and 0.727, respectively. A compact model was further developed and maintained similar predictive performance. The stacked ensemble approach can serve as a useful tool for identifying the risk of functional dependency in a large Chinese population. For ADL dependency, arthritis, age, self-report health, and waist circumference were identified as highly significant predictors. Conversely, cognitive function, age, living in rural areas, and performance in chair stand test emerged as highly ranked predictors for IADL dependency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Eason发布了新的文献求助10
1秒前
Catherine发布了新的文献求助10
2秒前
3秒前
苹果星星完成签到,获得积分20
4秒前
科研通AI5应助Guoqiang采纳,获得10
4秒前
5秒前
xcltzh1296完成签到,获得积分10
6秒前
无奈元容发布了新的文献求助30
7秒前
小蘑菇应助gambling采纳,获得10
8秒前
yzyzzyzz51完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
12秒前
pluto应助氢氧化钠Li采纳,获得20
12秒前
猕猴桃猴发布了新的文献求助20
13秒前
科研通AI2S应助苹果星星采纳,获得10
13秒前
想暴富的七七完成签到 ,获得积分10
14秒前
慕青应助zm采纳,获得30
14秒前
14秒前
15秒前
Hello应助Feifei133采纳,获得10
15秒前
Guoqiang发布了新的文献求助10
15秒前
jenningseastera应助甪用采纳,获得30
16秒前
满意的伊发布了新的文献求助10
17秒前
今后应助出其东门采纳,获得10
17秒前
xixihaha发布了新的文献求助10
20秒前
李健应助Aaron采纳,获得10
21秒前
Qionglin发布了新的文献求助200
21秒前
27秒前
28秒前
28秒前
orixero应助满意的伊采纳,获得10
29秒前
英姑应助橙子abcy采纳,获得10
31秒前
晴枫3648发布了新的文献求助10
32秒前
32秒前
机灵雨完成签到 ,获得积分10
32秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782130
求助须知:如何正确求助?哪些是违规求助? 3327565
关于积分的说明 10232237
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670024
邀请新用户注册赠送积分活动 799592
科研通“疑难数据库(出版商)”最低求助积分说明 758825