Leveraging multimodal features for knowledge graph entity alignment based on dynamic self-attention networks

计算机科学 嵌入 杠杆(统计) 成对比较 人工智能 加权 知识图 图形 特征(语言学) 语义学(计算机科学) 编码 理论计算机科学 数据挖掘 医学 语言学 哲学 生物化学 化学 基因 放射科 程序设计语言
作者
Qian Ye,Li Pan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:228: 120363-120363 被引量:1
标识
DOI:10.1016/j.eswa.2023.120363
摘要

Entity alignment establishes correspondence between entities across different knowledge graphs, which plays an important role in knowledge fusion. The key of entity alignment is to represent and fuse the features of entities across graphs. To improve efficiency, recent methods introduce graph embedding techniques that map different knowledge graphs into common latent spaces to encode structure and attribute features of entities. However, the structure embedding is generated by aggregating coarse connection information between entities without capturing semantics of the relations, which is incapable of dealing with entities of similar structures. Besides, multiple features are integrated by static arithmetic weighting method, which has difficulty in balancing the relative importance of structure and attribute features. To address these problems, we propose a dynamic self-attention based entity alignment model (DSEA), which leverages multimodal features for entity alignment through a dynamic self-attention network. To learn informative representations, we build a multimodal feature embedding component (MFE) to leverage structure, name, and position importance of entities. In MFE, semantics of adjacent entities and relations are exploited to enhance the structure embedding through a fine-granularity semantic augmentation network. Then a dynamic self-attention network is designed to adaptively evaluate the relative importance of structure and attribute features by learning the weights according to their contribution in entity alignment. Based on the feature weights, a similarity function of entities is formulated and the entity correspondence is established according to the similarities of entities. Extensive experiments conducted on five real-world datasets show that DSEA significantly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不吃香菜完成签到,获得积分10
1秒前
22完成签到 ,获得积分10
3秒前
萝卜丁完成签到 ,获得积分0
3秒前
科研牛人发布了新的文献求助20
4秒前
琳_完成签到 ,获得积分10
6秒前
小飞棍完成签到,获得积分10
6秒前
SXR完成签到,获得积分10
9秒前
地表飞猪完成签到,获得积分10
13秒前
huangJP完成签到,获得积分10
15秒前
自由的凌雪完成签到,获得积分10
15秒前
RussHu发布了新的文献求助20
18秒前
舒克完成签到,获得积分10
19秒前
华仔应助LY采纳,获得10
19秒前
阿然完成签到,获得积分10
23秒前
师大刘亦菲完成签到 ,获得积分10
26秒前
man完成签到 ,获得积分10
26秒前
vagabond完成签到 ,获得积分10
30秒前
DAI完成签到,获得积分10
32秒前
上官若男应助悦耳如彤采纳,获得10
33秒前
医生科学家完成签到 ,获得积分0
33秒前
Zz完成签到 ,获得积分10
34秒前
zhangpeng完成签到,获得积分10
34秒前
36秒前
粥粥完成签到,获得积分10
39秒前
40秒前
烦恼都走开完成签到,获得积分10
41秒前
刘翘铭发布了新的文献求助20
42秒前
雨辰完成签到,获得积分10
42秒前
朴实乐天发布了新的文献求助50
42秒前
44秒前
明天更好完成签到 ,获得积分10
45秒前
46秒前
LY发布了新的文献求助10
47秒前
艾达乳酪块完成签到,获得积分10
47秒前
安安完成签到 ,获得积分10
48秒前
zhangfuchao完成签到,获得积分10
48秒前
hhw完成签到,获得积分10
48秒前
自然怀梦完成签到,获得积分10
48秒前
悦耳如彤发布了新的文献求助10
51秒前
哈哈完成签到,获得积分10
51秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329787
捐赠科研通 3063102
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726