亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Karst vegetation coverage detection using UAV multispectral vegetation indices and machine learning algorithm

多光谱图像 植被(病理学) 喀斯特 遥感 植被分类 植被指数 算法 环境科学 植被类型 计算机科学 人工智能 归一化差异植被指数 地质学 地理 生态学 气候变化 考古 病理 海洋学 生物 栖息地 医学
作者
Wen Pan,Xiaoyu Wang,Yan Sun,Jia Wang,Yanjie Li,Sheng Li
出处
期刊:Plant Methods [BioMed Central]
卷期号:19 (1) 被引量:20
标识
DOI:10.1186/s13007-023-00982-7
摘要

Abstract Background Karst vegetation is of great significance for ecological restoration in karst areas. Vegetation Indices (VIs) are mainly related to plant yield which is helpful to understand the status of ecological restoration in karst areas. Recently, karst vegetation surveys have gradually shifted from field surveys to remote sensing-based methods. Coupled with the machine learning methods, the Unmanned Aerial Vehicle (UAV) multispectral remote sensing data can effectively improve the detection accuracy of vegetation and extract the important spectrum features. Results In this study, UAV multispectral image data at flight altitudes of 100 m, 200 m, and 400 m were collected to be applied for vegetation detection in a karst area. The resulting ground resolutions of the 100 m, 200 m, and 400 m data are 5.29, 10.58, and 21.16 cm/pixel, respectively. Four machine learning models, including Random Forest (RF), Support Vector Machine (SVM), Gradient Boosting Machine (GBM), and Deep Learning (DL), were compared to test the performance of vegetation coverage detection. 5 spectral values (Red, Green, Blue, NIR, Red edge) and 16 VIs were selected to perform variable importance analysis on the best detection models. The results show that the best model for each flight altitude has the highest accuracy in detecting its training data (over 90%), and the GBM model constructed based on all data at all flight altitudes yields the best detection performance covering all data, with an overall accuracy of 95.66%. The variables that were significantly correlated and not correlated with the best model were the Modified Soil Adjusted Vegetation Index (MSAVI) and the Modified Anthocyanin Content Index (MACI), respectively. Finally, the best model was used to invert the complete UAV images at different flight altitudes. Conclusions In general, the GBM_all model constructed based on UAV imaging with all flight altitudes was feasible to accurately detect karst vegetation coverage. The prediction models constructed based on data from different flight altitudes had a certain similarity in the distribution of vegetation index importance. Combined with the method of visual interpretation, the karst green vegetation predicted by the best model was in good agreement with the ground truth, and other land types including hay, rock, and soil were well predicted. This study provided a methodological reference for the detection of karst vegetation coverage in eastern China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻完成签到,获得积分10
48秒前
ZQJ2001KYT完成签到,获得积分10
51秒前
共享精神应助ZQJ2001KYT采纳,获得10
1分钟前
酷酷雨梅完成签到 ,获得积分10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
左白易发布了新的文献求助10
2分钟前
2分钟前
ZQJ2001KYT发布了新的文献求助10
2分钟前
2分钟前
刘文思发布了新的文献求助10
2分钟前
科研通AI5应助刘文思采纳,获得10
3分钟前
3分钟前
Jelavender发布了新的文献求助10
4分钟前
Jelavender完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Medusa发布了新的文献求助10
4分钟前
Ava应助Carl采纳,获得10
5分钟前
dagangwood完成签到 ,获得积分10
6分钟前
滕皓轩完成签到 ,获得积分20
6分钟前
Evian79167应助一只西瓜茶采纳,获得10
6分钟前
馆长应助一只西瓜茶采纳,获得30
7分钟前
Alisha完成签到,获得积分10
7分钟前
7分钟前
manfullmoon完成签到,获得积分0
7分钟前
刘文思发布了新的文献求助10
7分钟前
Krim完成签到 ,获得积分10
7分钟前
共享精神应助刘文思采纳,获得10
8分钟前
柒月完成签到,获得积分10
8分钟前
碧蓝可仁完成签到 ,获得积分10
9分钟前
andrele完成签到,获得积分10
9分钟前
大模型应助科研通管家采纳,获得10
9分钟前
qqq完成签到,获得积分10
10分钟前
12分钟前
jaya发布了新的文献求助10
12分钟前
满意的伊完成签到,获得积分10
12分钟前
jaya完成签到,获得积分10
12分钟前
朴实的雨筠完成签到,获得积分20
13分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4484917
求助须知:如何正确求助?哪些是违规求助? 3940615
关于积分的说明 12220698
捐赠科研通 3596179
什么是DOI,文献DOI怎么找? 1977791
邀请新用户注册赠送积分活动 1014777
科研通“疑难数据库(出版商)”最低求助积分说明 908016