Synthesis of in situ Generated Cu−CNT Hybrid Nanofluid and the Study of Their Thermo‐physical Properties

纳米流体 材料科学 纳米颗粒 Zeta电位 化学工程 热导率 粘度 表面改性 传热 色散(光学) 碳纳米管 纳米技术 分散稳定性 强化传热 拉曼光谱 复合材料 热力学 工程类 物理 光学
作者
Shipra Mital Gupta,Shipra Mital Gupta,S. K. Sharma
出处
期刊:ChemistrySelect [Wiley]
卷期号:8 (3) 被引量:3
标识
DOI:10.1002/slct.202203102
摘要

Abstract In recent years, numerous investigations have been carried out in heat transfer applications for CNT nanofluid as it possesses a high thermal conductivity compared to conventional fluids. Hydrophobicity of CNT poses a challenge to disperse CNT in polar basefluid. Surfactants can solve this issue up to a certain extent only but have some associated disadvantages such as foam formation, stickiness and viscosity enhancement responsible for an increase in power required to pump Nanofluid in heat transfer devices. This work presents preparation of a hybrid nanofluid as an alternative. Cu−CNT hybrid nanoparticles were generated in this research using in‐situ preparation of Cu nanoparticles in the presence of CNT and dispersion in double distilled water without addition of surfactant to produce a stable nanofluid. FESEM with EDX confirms copper nanoparticles present on outer surface of MWCNT and Raman spectroscopy confirmed the covalent functionalization. Spectral analysis, Zeta potential, and DLS were used to evaluate the dispersibility of Cu−CNT hybrid nanofluid. The results showed that the samples were extremely stable, with maximum stability of about 168 days. XRD pattern of Cu−CNT hybrid nanoparticles confirmed the existence of Cu and CNT. Nanofluid demonstrated a minor increase in density and viscosity compared to basefluid water due to addition of nanoparticles. An increase in thermal conductivity was also observed, which is critical for heat transfer applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛牛完成签到,获得积分10
刚刚
lll完成签到,获得积分10
1秒前
motingping完成签到,获得积分10
1秒前
1秒前
1秒前
b15966013195应助星轨采纳,获得10
2秒前
vermouth发布了新的文献求助10
2秒前
Yultuz友完成签到 ,获得积分10
2秒前
2秒前
科研通AI5应助时尚元绿采纳,获得10
3秒前
李李05完成签到,获得积分10
3秒前
西瓜鹿完成签到,获得积分10
3秒前
zhoupeiyan423完成签到,获得积分10
4秒前
4秒前
虚幻的千秋完成签到,获得积分10
4秒前
卫卫完成签到 ,获得积分10
4秒前
狂野碧琴发布了新的文献求助10
4秒前
4秒前
3333完成签到,获得积分10
4秒前
5秒前
M1有光发布了新的文献求助10
5秒前
充电宝应助旺帮主采纳,获得10
5秒前
狗贼完成签到,获得积分10
6秒前
6秒前
6秒前
卜念关注了科研通微信公众号
7秒前
虚心钢笔发布了新的文献求助10
7秒前
文汉天女完成签到,获得积分10
7秒前
goinggo发布了新的文献求助10
7秒前
Crazydan发布了新的文献求助10
7秒前
SKSK完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
天天快乐应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
谈笑间应助科研通管家采纳,获得10
9秒前
赵梦娜发布了新的文献求助20
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
谈笑间应助科研通管家采纳,获得10
9秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
Microfluidic Cell Culture Systems 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805892
求助须知:如何正确求助?哪些是违规求助? 3350749
关于积分的说明 10350923
捐赠科研通 3066628
什么是DOI,文献DOI怎么找? 1684048
邀请新用户注册赠送积分活动 809244
科研通“疑难数据库(出版商)”最低求助积分说明 765425