Understanding the Space-Charge Layer in SnO2 for Enhanced Electron Extraction in Hybrid Perovskite Solar Cells

材料科学 氧化铟锡 钙钛矿(结构) 空间电荷 耗尽区 工作职能 光电子学 氧化锡 图层(电子) 氧化物 电子 电子迁移率 电子传输链 纳米技术 化学工程 兴奋剂 化学 生物化学 物理 量子力学 工程类 冶金
作者
Sarah Su-O Youn,Jihyun Kim,Junhong Na,William Jo,Gee Yeong Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (42): 48229-48239 被引量:1
标识
DOI:10.1021/acsami.2c12461
摘要

Tin oxide (SnO2) has been widely used as an n-type metal oxide electron transport layer in perovskite solar cells (PSCs) owing to its superior electrical and optical properties and low-temperature synthesis process. In particular, the interfacial effect between indium tin oxide (ITO) and SnO2 is an important parameter that controls the charge transport properties and device performance of the PSCs. Therefore, understanding the interfacial effect of ITO/SnO2 and its role in PSCs is crucial, but it is not studied intensively. Herein, we investigated the space-charge effect at the interface of ITO/SnO2 using transfer length measurement and conductive atomic force microscopy as a function of SnO2 thickness. Moreover, optical, morphologic, and device measurements were performed to determine the optimal SnO2 thickness for PSCs. The space-charge effect was identified in ITO/SnO2 when the SnO2 layer was very thin due to electron depletion near the interface. Interestingly, a critical kink point was observed at approximately 10 nm SnO2 thickness, indicating the electron depletion and weak charge transfer behavior of the device. Thus, a thickness around 20 nm was favorable for the best PSC performance because charge transport behavior in the thin SnO2 layer was depressed by electron depletion. However, when the thickness of SnO2 exceeded 50 nm, the device performance deteriorated due to increased series resistance. This study provides a strategy to tune the electron transport layer and boost the charge transport behavior in PSCs, making important contributions to optimizing SnO2-based PSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
爆米花应助焦糖冬瓜采纳,获得10
刚刚
1秒前
Lexcellent发布了新的文献求助10
1秒前
二号完成签到,获得积分10
1秒前
萝卜特二完成签到,获得积分10
3秒前
积极断缘发布了新的文献求助10
3秒前
benben应助chukuangsheng采纳,获得10
3秒前
大个应助kankan katz采纳,获得10
4秒前
smellycat完成签到,获得积分10
4秒前
Chem is try发布了新的文献求助10
4秒前
皮老八完成签到,获得积分10
4秒前
5秒前
Narcissus153发布了新的文献求助20
6秒前
小蘑菇应助鲸落层川采纳,获得10
6秒前
7秒前
LY完成签到,获得积分20
7秒前
Wcc发布了新的文献求助50
10秒前
10秒前
认真de于完成签到,获得积分10
10秒前
周晓彤完成签到 ,获得积分10
11秒前
11秒前
SCT完成签到,获得积分10
11秒前
Mortal完成签到,获得积分10
11秒前
木榕城发布了新的文献求助10
12秒前
12秒前
CipherSage应助俭朴涵山采纳,获得10
12秒前
LY发布了新的文献求助10
12秒前
小莹子发布了新的文献求助10
12秒前
wenxiansci完成签到,获得积分0
13秒前
LK完成签到 ,获得积分10
13秒前
13秒前
Young发布了新的文献求助10
15秒前
yangminghan发布了新的文献求助10
15秒前
16秒前
16秒前
77完成签到,获得积分10
16秒前
dhs发布了新的文献求助10
17秒前
慕青应助雨好大采纳,获得10
18秒前
乐观的雁兰完成签到 ,获得积分10
19秒前
19秒前
高分求助中
【重要提醒】请驳回机器人应助,等待人工应助!!!! 20000
Teaching Social and Emotional Learning in Physical Education 1000
Multifunctionality Agriculture: A New Paradigm for European Agriculture and Rural Development 500
grouting procedures for ground source heat pump 500
A Monograph of the Colubrid Snakes of the Genus Elaphe 300
An Annotated Checklist of Dinosaur Species by Continent 300
The Chemistry of Carbonyl Compounds and Derivatives 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2340014
求助须知:如何正确求助?哪些是违规求助? 2031977
关于积分的说明 5082427
捐赠科研通 1777063
什么是DOI,文献DOI怎么找? 888703
版权声明 556090
科研通“疑难数据库(出版商)”最低求助积分说明 473921