银纳米粒子
粒径
化学
土壤水分
粒子(生态学)
纳米颗粒
粒子数
粒度分布
环境化学
电感耦合等离子体质谱法
环境科学
矿物学
质谱法
色谱法
材料科学
纳米技术
生态学
生物
物理
等离子体
物理化学
量子力学
土壤科学
作者
Qingsheng Bai,Qingcun Li,Jingfu Liu
标识
DOI:10.1021/acs.est.2c08024
摘要
The potential risk of various silver-containing nanoparticles (AgCNPs) in soils is related to the concentration, size, and speciation, but their determination remains a great challenge. Herein, we developed an effective method for determining the particle number, size, and species of dominant AgCNPs in soils, including nanoparticles of silver (Ag NPs), silver chloride (AgCl NPs), and silver sulfide (Ag2S NPs). By ultrasonication wand-assisted tetrasodium pyrophosphate extraction, these AgCNPs were extracted efficiently from soils. Then, multistep selective dissolution of Ag NPs, AgCl NPs, and whole Ag NPs/AgCl NPs/Ag2S NPs was achieved by 1% (v/v) H2O2, 5% (v/v) NH3·H2O, and 10 mM thiourea in 2% (v/v) acetic acid, respectively. Finally, the particle number concentration and size distribution of AgCNPs in the extracts and the remaining AgCNP particle number concentration after each dissolution were determined by single-particle inductively coupled plasma mass spectroscopy for speciation of the dominant AgCNPs. AgCNPs were detected in all five soil samples with the concentrations of 0.23-8.00 × 107 particles/g and sizes of 16-110 nm. Ag2S NPs were the main form of AgCNPs in the examined soils with the percentage range of 53.98-69.19%, followed by AgCl NPs (11.42-23.31%) and Ag NPs (7.78-16.19%). Our method offers a new approach for evaluating the occurrence and potential risk of AgCNPs in environmental soils.
科研通智能强力驱动
Strongly Powered by AbleSci AI