已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Heterogeneous Graph Neural Network With Attribute Enhancement and Structure-Aware Attention

计算机科学 过度拟合 注意力网络 节点(物理) 图形 相关性(法律) 人工神经网络 数据挖掘 理论计算机科学 人工智能 工程类 结构工程 法学 政治学
作者
Shenghang Fan,Guanjun Liu,Jian Li
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 829-838 被引量:15
标识
DOI:10.1109/tcss.2023.3239034
摘要

Heterogeneous information network (HIN) has been applied in a wide variety of graph analysis tasks. At present, it is a trend of heterogeneous graph neural networks (HGNNs) to cast the meta-paths aside, since it solves the problem of structural information loss caused by artificially designed meta-paths. However, existing meta-path-free HGNNs fail to take into account that most node types in many HINs have no attributes, and they cannot make full use of sparse node attributes when applied to HINs with missing attributes. Furthermore, their computation of attention coefficients explores the correlations of node attributes while almost ignoring structural ones, which may limit the expression ability of the model and cause overfitting in model training. To alleviate these issues, we propose an HGNN with attribute enhancement and structure-aware attention (HGNN-AESA). First, we design an attribute enhancement module (AEM) to connect more useful attributed nodes to the target nodes. Specifically, AEM introduces a random walk with restart (RWR) strategy to obtain structural relevance scores of each node within its specific subgraph. The structural relevance scores are used to capture potentially influential attributed nodes in high-order neighborhood for each target node. Second, we propose heterogeneous structure-aware attention layers (HSALs) to learn node representations. HSALs follow a hierarchical attention framework, including node-level and type-level attention. The node-level attention aggregates feature (attribute) embeddings of same-type neighbors, and the relevant attention coefficients depend on the combination of node attributes and heterogeneous structural interventions. The type-level attention fuses all type-specific vector representations and generates the ultimate node embedding. Finally, extensive experiments on three different real-world HIN datasets demonstrate that our model outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄前久美子完成签到 ,获得积分10
1秒前
3秒前
Maestro_S应助野生菜狗采纳,获得10
6秒前
彭于晏应助22222采纳,获得10
6秒前
JamesPei应助zhengxiaomin1992采纳,获得10
7秒前
荷兰香猪完成签到,获得积分10
8秒前
苹果路人发布了新的文献求助10
8秒前
今后应助王旭阳采纳,获得10
9秒前
10秒前
飞翔的梦完成签到,获得积分10
11秒前
星辰大海应助良言采纳,获得10
11秒前
347u完成签到 ,获得积分10
12秒前
Ava应助开心重要采纳,获得10
12秒前
YUKI发布了新的文献求助10
15秒前
15秒前
18秒前
苹果路人完成签到,获得积分10
19秒前
Tristan完成签到 ,获得积分10
19秒前
20秒前
小叶同学发布了新的文献求助10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
破忒头应助科研通管家采纳,获得10
21秒前
21秒前
结实的寻冬完成签到 ,获得积分10
22秒前
瞬间de回眸完成签到 ,获得积分10
24秒前
多年以后完成签到,获得积分10
24秒前
24秒前
CC完成签到 ,获得积分10
25秒前
Ghiocel完成签到,获得积分10
27秒前
热带蚂蚁完成签到 ,获得积分10
27秒前
22222发布了新的文献求助10
28秒前
李健应助YUKI采纳,获得10
29秒前
30秒前
山茶花白玫瑰完成签到 ,获得积分10
31秒前
bless完成签到 ,获得积分10
32秒前
六六完成签到 ,获得积分10
33秒前
浓浓完成签到 ,获得积分10
33秒前
千十一完成签到,获得积分10
35秒前
小羊完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4375258
求助须知:如何正确求助?哪些是违规求助? 3871491
关于积分的说明 12066965
捐赠科研通 3514384
什么是DOI,文献DOI怎么找? 1928563
邀请新用户注册赠送积分活动 970184
科研通“疑难数据库(出版商)”最低求助积分说明 868958