Density Functional Theory and Machine Learning-Based Quantitative Structure–Activity Relationship Models Enabling Prediction of Contaminant Degradation Performance with Heterogeneous Peroxymonosulfate Treatments

降级(电信) 化学 密度泛函理论 环境科学 计算机科学 计算化学 电信
作者
Zijie Xiao,Bowen Yang,Xiaochi Feng,Zhenqin Liao,Hongtao Shi,Weiyu Jiang,Caipeng Wang,Nanqi Ren
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (9): 3951-3961 被引量:41
标识
DOI:10.1021/acs.est.2c09034
摘要

Heterogeneous peroxymonosulfate (PMS) treatment is recognized as an effective advanced oxidation process (AOP) for the treatment of organic contaminants. Quantitative structure–activity relationship (QSAR) models have been applied to predict the oxidation reaction rates of contaminants in homogeneous PMS treatment systems but are seldom applied in heterogeneous treatment systems. Herein, we established QSAR models updated with density functional theory (DFT) and machine learning approaches to predict the degradation performance for a series of contaminants in heterogeneous PMS systems. We imported the characteristics of organic molecules calculated using constrained DFT as input descriptors and predicted the apparent degradation rate constants of contaminants as the output. The genetic algorithm and deep neural networks were used to improve the predictive accuracy. The qualitative and quantitative results from the QSAR model for the degradation of contaminants can be used to select the most appropriate treatment system. A strategy for selection of the optimum catalyst for PMS treatment of specific contaminants was also established according to the QSAR models. This work not only increases our understanding of contaminant degradation in PMS treatment systems but also highlights a novel QSAR model to predict the degradation performance in complicated heterogeneous AOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
奋斗的荆发布了新的文献求助10
3秒前
隐形曼青应助xixi采纳,获得10
3秒前
5秒前
Hina完成签到,获得积分10
7秒前
陈月月鸟发布了新的文献求助50
8秒前
灵巧醉山完成签到 ,获得积分20
8秒前
9秒前
10秒前
12秒前
静静完成签到,获得积分10
13秒前
奋斗的荆完成签到,获得积分10
13秒前
万能图书馆应助浓雾采纳,获得10
13秒前
13秒前
田様应助xixi采纳,获得10
13秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
MChen发布了新的文献求助10
15秒前
文艺的初露完成签到,获得积分20
15秒前
elephant51完成签到,获得积分10
15秒前
领导范儿应助Silentjj84采纳,获得10
16秒前
Mike给Mike的求助进行了留言
16秒前
16秒前
柔弱舞蹈发布了新的文献求助10
16秒前
19秒前
20秒前
Chouvikin完成签到,获得积分10
21秒前
小虫发布了新的文献求助30
21秒前
duohao2023发布了新的文献求助10
21秒前
21秒前
22秒前
灵感大王发布了新的文献求助10
24秒前
xixi发布了新的文献求助10
24秒前
枫泾发布了新的文献求助10
25秒前
wei完成签到,获得积分0
25秒前
彭于晏应助郷禦采纳,获得10
25秒前
搞怪薯片发布了新的文献求助10
26秒前
26秒前
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977986
求助须知:如何正确求助?哪些是违规求助? 3522138
关于积分的说明 11211677
捐赠科研通 3259360
什么是DOI,文献DOI怎么找? 1799602
邀请新用户注册赠送积分活动 878476
科研通“疑难数据库(出版商)”最低求助积分说明 806918