电解
法拉第效率
电极
纳米颗粒
材料科学
膜
催化作用
电化学
纳米技术
晶界
膜电极组件
吸附
拉曼光谱
一氧化碳
化学工程
冶金
电解质
化学
工程类
微观结构
有机化学
物理化学
生物化学
物理
光学
作者
Hefei Li,Pengfei Wei,Tianfu Liu,Mingrun Li,Chao Wang,Rongtan Li,Jinyu Ye,Zhi‐You Zhou,Shi‐Gang Sun,Qiang Fu,Dunfeng Gao,Guoxiong Wang,Xinhe Bao
标识
DOI:10.1038/s41467-024-49095-2
摘要
Abstract Producing valuable chemicals like ethylene via catalytic carbon monoxide conversion is an important nonpetroleum route. Here we demonstrate an electrochemical route for highly efficient synthesis of multicarbon (C 2+ ) chemicals from CO. We achieve a C 2+ partial current density as high as 4.35 ± 0.07 A cm −2 at a low cell voltage of 2.78 ± 0.01 V over a grain boundary-rich Cu nanoparticle catalyst in an alkaline membrane electrode assembly (MEA) electrolyzer, with a C 2+ Faradaic efficiency of 87 ± 1% and a CO conversion of 85 ± 3%. Operando Raman spectroscopy and density functional theory calculations reveal that the grain boundaries of Cu nanoparticles facilitate CO adsorption and C − C coupling, thus rationalizing a qualitative trend between C 2+ production and grain boundary density. A scale-up demonstration using an electrolyzer stack with five 100 cm 2 MEAs achieves high C 2+ and ethylene formation rates of 118.9 mmol min −1 and 1.2 L min −1 , respectively, at a total current of 400 A (4 A cm −2 ) with a C 2+ Faradaic efficiency of 64%.
科研通智能强力驱动
Strongly Powered by AbleSci AI