Comprehensive quantitative radiogenomic evaluation reveals novel radiomic subtypes with distinct immune pattern in glioma

胶质瘤 无线电技术 免疫系统 计算生物学 医学 生物 癌症研究 免疫学 放射科
作者
Yue Sun,Yakun Zhang,Jing Gan,Hanxiao Zhou,Shuang Guo,Xinyue Wang,Caiyu Zhang,Wen Zheng,Xiaoxi Zhao,Xia Li,Li Wang,Shangwei Ning
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:177: 108636-108636 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108636
摘要

Accurate classification of gliomas is critical to the selection of immunotherapy, and MRI contains a large number of radiomic features that may suggest some prognostic relevant signals. We aimed to predict new subtypes of gliomas using radiomic features and characterize their survival, immune, genomic profiles and drug response. We initially obtained 341 images of 36 patients from the CPTAC dataset for the development of deep learning models. Further 1812 images of 111 patients from TCGA_GBM and 152 images of 53 patients from TCGA_LGG were collected for testing and validation. A deep learning method based on Mask R-CNN was developed to identify new subtypes of glioma patients and compare the survival status, immune infiltration patterns, genomic signatures, specific drugs, and predictive models of different subtypes. 200 glioma patients (mean age, 33 years ± 19 [standard deviation]) were enrolled. The accuracy of the deep learning model for identifying tumor regions achieved 88.3% (98/ 111) in the test set and 83% (44/53) in the validation set. The sample was divided into two subtypes based on radiomic features showed different prognostic outcomes (hazard ratio, 2.70). According to the results of the immune infiltration analysis, the subtype with a poorer prognosis was defined as the immunosilencing radiomic (ISR) subtype (n=43), and the other subtype was the immunoactivated radiomic (IAR) subtype (n=53). Subtype-specific genomic signatures distinguished celllines into ISR celllines (n=9) and control celllines (n=13), and identified eight ISR-specific drugs, four of which were validated by the OCTAD database. Three machine learning-based classifiers showed that radiomic and genomic co-features better predicted the radiomic subtypes of gliomas. These findings provide insights into how radiogenomic could identify specific subtypes that predict prognosis, immune and drug sensitivity in a non-invasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鲨鱼完成签到,获得积分10
刚刚
3秒前
科研通AI2S应助alexisgood采纳,获得10
6秒前
meitounao完成签到,获得积分10
6秒前
poohpooh发布了新的文献求助10
7秒前
七月玖发布了新的文献求助30
8秒前
8秒前
8秒前
9秒前
锦鲤完成签到 ,获得积分10
10秒前
阳光洒进暖巷完成签到,获得积分10
10秒前
两个我发布了新的文献求助10
11秒前
陈宏宇发布了新的文献求助10
12秒前
擎天柱完成签到,获得积分10
23秒前
Vivian完成签到,获得积分10
26秒前
abc完成签到,获得积分10
29秒前
大胆日记本完成签到 ,获得积分10
30秒前
彭于晏应助cc采纳,获得10
30秒前
脑洞疼应助Tsjng采纳,获得10
31秒前
32秒前
32秒前
33秒前
情怀应助微笑采纳,获得10
34秒前
Mizuki发布了新的文献求助10
38秒前
39秒前
搜集达人应助科研通管家采纳,获得10
39秒前
研友_VZG7GZ应助科研通管家采纳,获得10
39秒前
orixero应助科研通管家采纳,获得10
39秒前
烟花应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
39秒前
WYP发布了新的文献求助10
40秒前
42秒前
wen发布了新的文献求助10
44秒前
Schwarz应助千帆采纳,获得20
44秒前
Mizuki完成签到,获得积分10
45秒前
45秒前
Hello应助皮崇知采纳,获得10
45秒前
千寒完成签到,获得积分10
47秒前
48秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899633
求助须知:如何正确求助?哪些是违规求助? 3444222
关于积分的说明 10833811
捐赠科研通 3169095
什么是DOI,文献DOI怎么找? 1750950
邀请新用户注册赠送积分活动 846407
科研通“疑难数据库(出版商)”最低求助积分说明 789179