Discriminative feature analysis of dairy products based on machine learning algorithms and Raman spectroscopy

人工智能 特征(语言学) 判别式 极限学习机 模式识别(心理学) 支持向量机 计算机科学 算法 线性判别分析 卷积神经网络 机器学习 人工神经网络 语言学 哲学
作者
Jia-Xin Li,Chun-Chun Qing,Xiu-Qian Wang,Meijia Zhu,Boya Zhang,Zhengyong Zhang
出处
期刊:Current research in food science [Elsevier BV]
卷期号:8: 100782-100782 被引量:3
标识
DOI:10.1016/j.crfs.2024.100782
摘要

Discriminant analysis of similar food samples is an important aspect of achieving food quality control. The effective combination of Raman spectroscopy and machine learning algorithms has become an extremely attractive approach to develop intelligent discrimination techniques. Feature spectral analysis can help researchers gain a deeper understanding of the data patterns in food quality discrimination. Herein, this work takes the discrimination of three brands of dairy products as an example to investigate the Raman spectral feature based on the support vector machines (SVM), extreme learning machines (ELM) and convolutional neural network (CNN) algorithms. The results show that there are certain differences in the optimal spectral feature interval corresponding to different machine learning algorithms. Selecting the appropriate spectral feature interval can maintain high recognition accuracy and improve the computational efficiency of the algorithm. For example, the SVM algorithm has a recognition accuracy of 100% in the 890-980 cm−1, 1410-1500 cm−1 fusion spectral range, which takes about 200 s. The ELM algorithm also has a recognition accuracy of 100% in the 890-980 cm−1, 1410-1500 cm−1 fusion spectral range, which takes less than 0.3 s. The CNN algorithm has a recognition accuracy of 100% in the 890-980 cm−1, 1050-1180 cm−1, 1410-1500 cm−1 fusion spectral range, which takes about 80 s. In addition, by analyzing the distribution of spectral feature intervals based on Euclidean distance, the distribution of experimental samples based on feature spectra is visually displayed. Through the spectral feature analysis process of similar samples, a set of analysis strategies is provided to deeply reveal the data foundation of classification algorithms, which can provide reference for the analysis of relevant discriminative research patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小浅笑完成签到,获得积分10
1秒前
3秒前
Rae完成签到,获得积分10
5秒前
打打应助小可乐呀小可乐采纳,获得10
5秒前
科目三应助12采纳,获得10
5秒前
6秒前
一一应助HR112采纳,获得10
6秒前
TT完成签到,获得积分10
7秒前
韭菜盒子发布了新的文献求助10
8秒前
9秒前
奂锐123发布了新的文献求助10
10秒前
慕青应助韭菜盒子采纳,获得10
12秒前
黑马王子完成签到,获得积分10
12秒前
13秒前
jiajia完成签到 ,获得积分10
14秒前
潘宋发布了新的文献求助10
16秒前
彭于晏应助hana采纳,获得10
16秒前
Isaac完成签到,获得积分10
17秒前
黑马完成签到,获得积分10
18秒前
迅速映之完成签到,获得积分10
20秒前
冰汤圆完成签到 ,获得积分10
24秒前
温暖的广缘完成签到 ,获得积分10
26秒前
华仔应助潘宋采纳,获得10
27秒前
27秒前
29秒前
29秒前
29秒前
DPH完成签到 ,获得积分10
30秒前
31秒前
NI发布了新的文献求助30
32秒前
搓姆酿发布了新的文献求助10
32秒前
韭黄发布了新的文献求助10
34秒前
朴素雅寒关注了科研通微信公众号
34秒前
科大鲨鱼完成签到,获得积分10
35秒前
Miracle发布了新的文献求助10
35秒前
alive完成签到,获得积分10
36秒前
炙热的皮皮虾关注了科研通微信公众号
36秒前
37秒前
可爱的函函应助树123采纳,获得10
39秒前
yaojiayoua发布了新的文献求助30
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332370
捐赠科研通 3063467
什么是DOI,文献DOI怎么找? 1681747
邀请新用户注册赠送积分活动 807681
科研通“疑难数据库(出版商)”最低求助积分说明 763864