Targeted Universal Adversarial Attack on Deep Hash Networks

散列函数 计算机科学 理论计算机科学 对抗制 判别式 余弦相似度 人工智能 模式识别(心理学) 计算机安全
作者
Fanlei Meng,Xiangru Chen,Yuan Cao
标识
DOI:10.1145/3652583.3658062
摘要

Deep hash networks have garnered significant attention due to their efficiency and ability to learn discriminative embeddings for approximate nearest neighbor search. However, it is observed that deep hash networks are vulnerable to adversarial interference, which is an important security problem. Despite the growing interest in targeted attack on deep hash networks, it suffers from a scarcity of research on generating universal adversarial perturbations which are unrelated to the specific images. In this paper, we introduce a novel Targeted Universal adversarial Attack (TUA) on deep hash networks. Our framework consists of two key components: a ReferenceNet and a universal generative adversarial network. Specifically, ReferenceNet is designed to generate category-level representative reference codes for the target labels by introducing a cosine similarity based reference loss. Additionally, we feed the fixed random noise and target labels into the generator to learn universal adversarial perturbations. Particularly, the reference codes are used to optimize the generator by minimizing the Hamming distances between the hash codes of the adversarial examples and the reference codes. Extensive experiments on three common datasets validate the superior targeted attack performance, transferability, and universality of our method compared with state-of-the-art targeted attack methods on deep hash networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吹雪完成签到,获得积分0
刚刚
黑色幽默完成签到 ,获得积分10
1秒前
1秒前
feitian201861完成签到,获得积分10
2秒前
复杂的可乐完成签到 ,获得积分10
2秒前
Yingling应助科研通管家采纳,获得10
2秒前
FelixChen应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
FelixChen应助科研通管家采纳,获得10
3秒前
彭于彦祖应助科研通管家采纳,获得20
3秒前
FelixChen应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助活泼山雁采纳,获得30
3秒前
不吃香菜完成签到,获得积分10
3秒前
五月完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
11秒前
11秒前
干净的夜蓉完成签到,获得积分10
12秒前
泽佳发布了新的文献求助10
12秒前
TheaGao完成签到 ,获得积分10
13秒前
huahua完成签到 ,获得积分10
13秒前
武雨寒发布了新的文献求助10
15秒前
18秒前
赵世璧完成签到,获得积分10
20秒前
泽佳完成签到,获得积分20
20秒前
整化学发布了新的文献求助10
20秒前
欧皇发布了新的文献求助10
22秒前
爱科研的小胖子完成签到,获得积分10
26秒前
26秒前
彭于晏应助欧皇采纳,获得10
27秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864066
求助须知:如何正确求助?哪些是违规求助? 3406339
关于积分的说明 10649308
捐赠科研通 3130285
什么是DOI,文献DOI怎么找? 1726364
邀请新用户注册赠送积分活动 831635
科研通“疑难数据库(出版商)”最低求助积分说明 779990