软件部署
云计算
敏捷软件开发
可扩展性
计算机科学
断层(地质)
GSM演进的增强数据速率
故障注入
分布式计算
编码(集合论)
软件工程
嵌入式系统
系统工程
工程类
软件
数据库
操作系统
人工智能
程序设计语言
地震学
地质学
集合(抽象数据类型)
作者
Fang Luo,Jiafu Wan,Hu Cai,Shiyong Wang,Zhibo Pang,Mejdl Safran,Salman A. AlQahtani
标识
DOI:10.1109/mie.2024.3391943
摘要
In contemporary production systems, the escalating complexity and magnitude of equipment pose challenges to operational control processes, making them prone to failures. This vulnerability stems from dynamic randomness, multisource uncertainty, high coupling, and robust interferences, thereby rendering the execution of multisource domain fault knowledge fusion and the deployment of agile fault diagnosis across various scenarios exceptionally challenging. Hence, a low-code intelligent fault diagnosis platform tailored for intricate fault diagnosis contexts is introduced, integrating a cloud-based elastic infrastructure with low-code scalable capabilities and a self-developed edge-adaptive system. In addition to a comprehensive discussion of key generic technologies, the proposed diagnostic platform showcases fault diagnosis applications on a Süddeutsche Elektromotorenwerke (SEW) reduction platform and a wind turbine generator. These exemplifications effectively deliver full-lifecycle agile fault diagnosis management capabilities, enhancing diagnostic accuracy and efficiency for this context.
科研通智能强力驱动
Strongly Powered by AbleSci AI