清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multilayer Perceptron Neural Network with Arithmetic Optimization Algorithm-Based Feature Selection for Cardiovascular Disease Prediction

过度拟合 计算机科学 人工智能 特征选择 预处理器 机器学习 人工神经网络 水准点(测量) 不可用 数据挖掘 数据预处理 特征(语言学) 选择(遗传算法) 多层感知器 卷积神经网络 模式识别(心理学) 数学 统计 哲学 语言学 大地测量学 地理
作者
Fahad AlGhamdi,Haitham Almanaseer,Ghaith M. Jaradat,Ashraf Jaradat,Mutasem K. Alsmadi,Sana Jawarneh,Abdullah Almurayh,Jehad Saad Alqurni,Hayat Alfagham
出处
期刊:Machine learning and knowledge extraction [MDPI AG]
卷期号:6 (2): 987-1008 被引量:27
标识
DOI:10.3390/make6020046
摘要

In the healthcare field, diagnosing disease is the most concerning issue. Various diseases including cardiovascular diseases (CVDs) significantly influence illness or death. On the other hand, early and precise diagnosis of CVDs can decrease chances of death, resulting in a better and healthier life for patients. Researchers have used traditional machine learning (ML) techniques for CVD prediction and classification. However, many of them are inaccurate and time-consuming due to the unavailability of quality data including imbalanced samples, inefficient data preprocessing, and the existing selection criteria. These factors lead to an overfitting or bias issue towards a certain class label in the prediction model. Therefore, an intelligent system is needed which can accurately diagnose CVDs. We proposed an automated ML model for various kinds of CVD prediction and classification. Our prediction model consists of multiple steps. Firstly, a benchmark dataset is preprocessed using filter techniques. Secondly, a novel arithmetic optimization algorithm is implemented as a feature selection technique to select the best subset of features that influence the accuracy of the prediction model. Thirdly, a classification task is implemented using a multilayer perceptron neural network to classify the instances of the dataset into two class labels, determining whether they have a CVD or not. The proposed ML model is trained on the preprocessed data and then tested and validated. Furthermore, for the comparative analysis of the model, various performance evaluation metrics are calculated including overall accuracy, precision, recall, and F1-score. As a result, it has been observed that the proposed prediction model can achieve 88.89% accuracy, which is the highest in a comparison with the traditional ML techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jsw发布了新的文献求助10
35秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
Eileen完成签到 ,获得积分0
2分钟前
2分钟前
LINDENG2004完成签到 ,获得积分10
2分钟前
荷兰香猪完成签到,获得积分10
2分钟前
wakawaka完成签到 ,获得积分10
2分钟前
3分钟前
自然亦凝完成签到,获得积分10
3分钟前
Xuz完成签到 ,获得积分10
3分钟前
Able完成签到,获得积分10
3分钟前
poki完成签到 ,获得积分10
4分钟前
4分钟前
半晴发布了新的文献求助10
4分钟前
4分钟前
半晴完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
zzhui完成签到,获得积分10
5分钟前
Veritas发布了新的文献求助10
5分钟前
开心每一天完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
方白秋完成签到,获得积分0
6分钟前
北辰zdx完成签到,获得积分10
6分钟前
6分钟前
佳佳发布了新的文献求助10
6分钟前
丘比特应助佳佳采纳,获得10
6分钟前
Criminology34发布了新的文献求助500
6分钟前
jason完成签到,获得积分0
7分钟前
木冉完成签到 ,获得积分10
7分钟前
Kevin完成签到 ,获得积分10
7分钟前
传奇3应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651157
求助须知:如何正确求助?哪些是违规求助? 4783465
关于积分的说明 15053182
捐赠科研通 4809854
什么是DOI,文献DOI怎么找? 2572711
邀请新用户注册赠送积分活动 1528665
关于科研通互助平台的介绍 1487687