Structural Insights into Phase Formation of Sodium Layered Cathodes Materials with Prominent Electrochemical Performances

电化学 阴极 材料科学 相(物质) 价(化学) 氧化还原 纳米技术 析氧 化学工程 化学 冶金 工程类 电极 有机化学 物理化学
作者
Haocheng Ji,Hengyu Ren,Guojie Chen,Wenhai Ji,Feng Zhou,Haotian Qu,Hui Fang,Mihai Chu,Rui Qi,Jingjun Zhai,Wen Zeng,Tiefeng Liu,Guangmin Zhou,Yinguo Xiao,Jun Lü
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/anie.202510981
摘要

The electrochemical performances of layered cathode materials for sodium‐ion batteries (SIBs) are intimately dependent on their structural characteristics. However, realizing accurate regulation of phase structure by phase engineering is challenging, primarily due to constrained synthesis methods and the existing gaps in understanding of specialized phase structures. In this study, a series of P'2‐Na0.67Fe0.05Ti0.1Mn0.85O2 cathode material with prominent electrochemical performances were successfully synthesized, based on an in‐depth understanding of structural insights into P'2 phase. By analyzing the structural evolution and Mn‐valence changes during synthesis process, we found that oxygen vacancies play a significant role in determining the P'2‐P2 phase transition. Moreover, these structural insights not only identified the oxygen release and uptake behaviors in phase formation but also expanded synthesis strategy with enhanced operational feasibility. Benefits from expanded Mn redox range and stable oxygen vacancies during electrochemical cycling, the obtained P'2‐Na0.67Fe0.05Ti0.1Mn0.85O2 demonstrated a capacity increase of over ~40 mAh g‐1 at 0.1 C, maintaining ~93 mAh g‐1 even after 1000 cycles at 10 C, with an impressive retention rate of 87.5%. This research significantly advances the comprehension of both synthesis mechanism and electrochemical properties optimization mechanisms of P'2 phase materials, offering a pragmatic strategy for elevating the performance of SIB materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵科翊完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
马克发布了新的文献求助10
1秒前
852应助21采纳,获得10
2秒前
2秒前
3秒前
3秒前
FashionBoy应助刘放采纳,获得10
3秒前
愛愛愛愛完成签到,获得积分10
3秒前
4秒前
正在检索发布了新的文献求助10
4秒前
明明完成签到,获得积分10
4秒前
SciGPT应助sahula采纳,获得10
4秒前
2392620553发布了新的文献求助10
5秒前
6秒前
眯眯眼的仇天完成签到 ,获得积分10
6秒前
赵世璧发布了新的文献求助10
7秒前
zayhets发布了新的文献求助10
7秒前
高手发布了新的文献求助10
8秒前
我是老大应助admin采纳,获得10
8秒前
我不明白完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
葉涼完成签到,获得积分10
11秒前
11秒前
11秒前
JamieWave发布了新的文献求助10
12秒前
单纯麦片发布了新的文献求助10
12秒前
电催化CYY完成签到,获得积分10
12秒前
kkk完成签到,获得积分10
13秒前
13秒前
yhzbmw完成签到,获得积分10
14秒前
wangerer完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4289843
求助须知:如何正确求助?哪些是违规求助? 3816896
关于积分的说明 11953373
捐赠科研通 3460923
什么是DOI,文献DOI怎么找? 1898318
邀请新用户注册赠送积分活动 946774
科研通“疑难数据库(出版商)”最低求助积分说明 849890