The usefulness of combining topic modelling and statistical analysis to investigate the therapeutic process: A single case study

心理学 心理治疗师 过程(计算) 认识论 计算机科学 哲学 操作系统
作者
Davide Liccione,Luisa Siciliano
出处
期刊:Psychotherapy Research [Routledge]
卷期号:: 1-21
标识
DOI:10.1080/10503307.2025.2500504
摘要

This study examines whether patterns in the movement of topics during psychotherapy sessions can provide psychotherapists with actionable insights for single-case analysis. It utilizes both statistical models and AI-driven tools to uncover these dynamics. We transcribed a completed psychotherapy session comprising 26 sessions. First, common topics across all therapies were identified, and then expert psychotherapists labelled each conversational turn of this selected psychotherapy. As determined by the experts, the topic dynamics were analysed using Generalized Additive Mixed Models (GAMMs), which captured non-linear trends and hierarchical structures within the data. Subsequently, these trajectories, as identified by the experts, were compared with the topics extracted in an unsupervised manner using a topic modelling algorithm, called Latent Dirichlet Allocation (LDA). Our findings confirm that topic trajectory analysis reliably indicates therapeutic progress. Specifically, topics related to suffering (SPS) decreased over time, while topics concerning therapeutic refiguration and insight (TRI) increased, reflecting clinical improvement. The study demonstrates that both GAMMs and LDA are useful tools to see how the topics in specific psychotherapy are modified their occurrence during the therapeutic work. Combining classical methods of statistical analysis and AI-driven topic analysis enhances the sensitivity of assessments, providing insights into how the psychotherapy work changes across sessions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZH发布了新的文献求助10
刚刚
1秒前
蓝月光完成签到,获得积分10
2秒前
彩色盈完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
Kristine完成签到 ,获得积分10
4秒前
4秒前
CipherSage应助graham1101采纳,获得10
4秒前
bona关注了科研通微信公众号
5秒前
5秒前
科目三应助鲤鱼羿采纳,获得10
6秒前
大模型应助自然浩阑采纳,获得10
6秒前
彭于晏应助dudu采纳,获得10
6秒前
一只龟龟发布了新的文献求助10
7秒前
lalala发布了新的文献求助10
7秒前
笑点低愫完成签到,获得积分20
8秒前
雨碎寒江发布了新的文献求助10
8秒前
陌上完成签到,获得积分10
8秒前
decade发布了新的文献求助10
9秒前
9秒前
祖冰绿发布了新的文献求助10
10秒前
麦麦完成签到,获得积分10
10秒前
Owen应助伊萨卡采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
桐桐应助快乐保温杯采纳,获得10
12秒前
12秒前
陌上发布了新的文献求助10
12秒前
笑点低愫发布了新的文献求助10
12秒前
lf完成签到,获得积分10
12秒前
13秒前
sun关注了科研通微信公众号
13秒前
13秒前
睡觉睡觉完成签到 ,获得积分10
14秒前
15秒前
an发布了新的文献求助30
15秒前
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4233282
求助须知:如何正确求助?哪些是违规求助? 3766794
关于积分的说明 11834943
捐赠科研通 3425105
什么是DOI,文献DOI怎么找? 1879739
邀请新用户注册赠送积分活动 932470
科研通“疑难数据库(出版商)”最低求助积分说明 839682