亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Neural Networks for Tabular Data Learning: A Survey with Taxonomy and Directions

计算机科学 分类学(生物学) 人工智能 图形 人工神经网络 情报检索 理论计算机科学 植物 生物
作者
Cheng–Te Li,Yu-Che Tsai,Chih-Yao Chen,Jay Chiehen Liao
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:58 (1): 1-51 被引量:10
标识
DOI:10.1145/3744918
摘要

This survey dives into Tabular Data Learning (TDL) using Graph Neural Networks (GNNs), a domain where deep learning-based approaches have increasingly shown superior performance in both classification and regression tasks compared to traditional methods. We highlight a critical gap in deep neural TDL: the underrepresentation of latent correlations among data instances and feature values. GNNs, with their innate capability to model intricate relationships and interactions between diverse elements of tabular data, have garnered significant interest and application across TDL domains. Our survey provides a systematic review of the methods involved in designing and implementing GNNs for TDL (GNN4TDL). It encompasses a detailed investigation into the foundational aspects and an overview of GNN-based TDL methods, offering insights into their evolving landscape. We present a comprehensive taxonomy focused on constructing graph structures and representation learning within GNN-based TDL methods. We also examine various training plans, emphasize the integration of auxiliary tasks to enhance the representation quality. A critical part of our discussion is dedicated to the practical applications across a spectrum of GNN4TDL scenarios, exhibiting their versatility and impact. Last, we discuss the limitations and future directions, aiming at spurring advancements in GNN4TDL. This survey serves as a resource for researchers and practitioners, offering a thorough understanding of GNNs’ role in revolutionizing TDL and pointing toward future innovations in this promising area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清酒完成签到,获得积分20
5秒前
我是老大应助高铭泽采纳,获得10
6秒前
11秒前
18秒前
高铭泽发布了新的文献求助10
22秒前
caca完成签到,获得积分0
36秒前
38秒前
39秒前
Chen发布了新的文献求助10
42秒前
55秒前
xyydhcg发布了新的文献求助10
1分钟前
1分钟前
玮哥不是伟哥完成签到,获得积分10
1分钟前
1分钟前
xyydhcg完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
aaaaaa发布了新的文献求助10
2分钟前
2分钟前
Jsihao发布了新的文献求助50
2分钟前
2分钟前
2分钟前
2分钟前
Jsihao发布了新的文献求助10
2分钟前
2分钟前
Jsihao发布了新的文献求助10
2分钟前
袁建波完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407813
求助须知:如何正确求助?哪些是违规求助? 4525329
关于积分的说明 14101623
捐赠科研通 4439174
什么是DOI,文献DOI怎么找? 2436623
邀请新用户注册赠送积分活动 1428604
关于科研通互助平台的介绍 1406695