Using Machine Learning for automatic rock classification

地质学 人工智能 机器学习 计算机科学 采矿工程
作者
Tamanna Tamanna,Dominik C. Hezel,Nishtha Srivastava,Johannes Faber
出处
期刊:American Mineralogist [Mineralogical Society of America]
被引量:1
标识
DOI:10.2138/am-2025-9958
摘要

Abstract This study presents a Machine Learning (ML) model for automatic rock classification in the TAS (Total Alkali-Silica) plot. Instead of the 3 required oxides to classify a rock in the TAS plot (SiO2, Na2O, K2O), we use a total of 10 major and minor oxides in an ML model. This allows to (i) classify rocks for which no SiO2 concentrations have been reported, which is often the case for solution based methods where SiO2 is lost in the process of dissolution, and (ii) classify rocks in which alkali element concentrations were affected by e.g., secondary or late-stage hydrous alteration. A hybrid optimised model, trained on a combination of GEOROC and synthetic datasets has an excellent accuracy when tested on GEOROC, synthetic, and PetDB datasets, with accuracies of 99.5%, 99.2%, and 97%, respectively. A modified ML model to classify rocks for which no SiO2 is reported has almost the same accuracy, with a drop by only 2 percent-points to 97.2% during training. And the modified ML model to classify rocks in which alkali oxides have been altered has accuracies with an average of ∼77%. Overall, these findings suggest that ML models are capable of classifying rocks according to the TAS plot, even when no SiO2 has been reported, or, at least to some extent, when alkalis have been redistributed. Future improvements could include additional trace elements to enhance the model’s accuracy for rocks where no SiO2 is available and fluid-immobile elements for rocks where alkali oxides were altered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shuaiwen25完成签到,获得积分10
1秒前
3秒前
lll发布了新的文献求助10
3秒前
王jj发布了新的文献求助10
4秒前
0610发布了新的文献求助10
5秒前
liu发布了新的文献求助10
7秒前
8秒前
无花果应助mumu采纳,获得10
8秒前
9秒前
10秒前
11秒前
12秒前
隐形曼青应助深蓝采纳,获得10
13秒前
ajun完成签到,获得积分10
15秒前
15秒前
思源应助liu采纳,获得10
15秒前
顾念完成签到,获得积分10
15秒前
王jj发布了新的文献求助10
15秒前
15秒前
仲谋发布了新的文献求助10
15秒前
16秒前
fun完成签到,获得积分10
16秒前
乐乐应助cs采纳,获得10
18秒前
18秒前
fun发布了新的文献求助10
19秒前
营养快线发布了新的文献求助50
19秒前
怡然的沁发布了新的文献求助10
19秒前
研友_nVWXMZ完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
bzlish发布了新的文献求助10
20秒前
Gloyxtg发布了新的文献求助10
20秒前
Orange应助Tess采纳,获得10
22秒前
22秒前
丘比特应助0610采纳,获得10
24秒前
米花发布了新的文献求助10
25秒前
852应助yang采纳,获得10
25秒前
shun发布了新的文献求助10
26秒前
营养快线完成签到,获得积分10
26秒前
hgc完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642594
求助须知:如何正确求助?哪些是违规求助? 4759426
关于积分的说明 15018313
捐赠科研通 4801162
什么是DOI,文献DOI怎么找? 2566473
邀请新用户注册赠送积分活动 1524521
关于科研通互助平台的介绍 1484039